Loading…
Effects of Light Intensity on the Flight Behaviour of Adult Tirumala limniace (Cramer) (Lepidoptera: Nymphalidae: Danainae)
Light intensity significantly affects insect flight behaviour. Mating of butterflies is significantly associated with flight frequency. However, no research has elucidated the effects of light intensity on butterfly flight. Thus, a clear understanding of the effects of light intensity on flight has...
Saved in:
Published in: | Journal of insect behavior 2017-03, Vol.30 (2), p.139-154 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Light intensity significantly affects insect flight behaviour. Mating of butterflies is significantly associated with flight frequency. However, no research has elucidated the effects of light intensity on butterfly flight. Thus, a clear understanding of the effects of light intensity on flight has significant theoretical implications for the cultivation and utilization of butterflies. We observed the flight behaviour of adult
Tirumala limniace
(Cramer) exposed to light intensities from 243 to 2240 lx and measured the frequency of flight, take-off rhythm, thoracic temperature excess (△T) when perching and flying, and the tendency for thoracic temperature to increase. Results showed that high-intensity light significantly increased flight activity, and males were more active than females under similar light intensities; strong light (1280–2240 lx) resulted in female and male butterflies taking flight earlier compared with weak light (243–864 lx); and a similar pattern was observed for flight duration, with flights by males being significantly longer than those by females at 864–2240 lx; △T of adults flying in strong light was significantly higher than in weak light, whereas the thoracic temperature of perching adults was similar to the air temperature. Compared with other light intensities, the equilibrium thoracic temperature of adults exposed to 2240 lx was higher, and the time to reach it was shorter; in addition, the △T and rate of thoracic temperature increase were higher and achieved more quickly, respectively. Thus, of the 243–2240 lx range, 2240 lx was the most optimal light intensity for adult
T. limniace
flight and captive rearing. |
---|---|
ISSN: | 0892-7553 1572-8889 |
DOI: | 10.1007/s10905-017-9602-8 |