Loading…

IL-13-Mediated Regulation of Learning and Memory

The role of proinflammatory cytokines in cognitive function has been investigated with both beneficial and possible detrimental effects, depending on the cytokine. More recently, the type 2 IL-4 has been demonstrated to play a role in cognition. In this study, using the Morris water maze task, we de...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of immunology (1950) 2017-04, Vol.198 (7), p.2681-2688
Main Authors: Brombacher, Tiroyaone M, Nono, Justin K, De Gouveia, Keisha S, Makena, Nokuthula, Darby, Matthew, Womersley, Jacqueline, Tamgue, Ousman, Brombacher, Frank
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The role of proinflammatory cytokines in cognitive function has been investigated with both beneficial and possible detrimental effects, depending on the cytokine. More recently, the type 2 IL-4 has been demonstrated to play a role in cognition. In this study, using the Morris water maze task, we demonstrate that IL-13-deficient mice are significantly impaired in working memory as well as attenuated reference memory, both functions essential for effective complex learning. During the learning process, wild-type mice increased the number of CD4 T cells in the meninges and production of IL-13, whereas neither Morris water maze-trained IL-4 nor trained IL-13-deficient mice were able to increase CD4 T cells in the meninges. Mechanistically, we showed that IL-13 is able to stimulate primary astrocytes to produce brain-derived neurotrophic factor, which does foster cognitive functions. Moreover, Morris water maze-trained wild-type mice were able to increase astrocyte-produced glial fibrillary acidic protein in the hippocampus, which was impaired in Morris water maze-trained IL-4- and IL-13-deficient mice. Collectively, this study strongly suggests that the Th2 cytokines, not only IL-4 but also IL-13, are involved in cognitive functions by stimulating astrocytes from the meninges and hippocampus. These results may be important for future development of therapeutic approaches associated with neurologic disorders such as Parkinson disease-associated dementia and HIV-associated dementia among others.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1601546