Loading…
Genotoxicity of citrate-coated silver nanoparticles to human keratinocytes assessed by the comet assay and cytokinesis blocked micronucleus assay
Silver nanoparticles (AgNPs) are widely used in industrial, cosmetic, and biomedical products, and humans are frequently exposed to these products through the skin. It is widely recognized that the characteristics of AgNPs (e.g., size, coating) may influence their cytotoxic effects, but their correl...
Saved in:
Published in: | Environmental science and pollution research international 2017-02, Vol.24 (5), p.5039-5048 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Silver nanoparticles (AgNPs) are widely used in industrial, cosmetic, and biomedical products, and humans are frequently exposed to these products through the skin. It is widely recognized that the characteristics of AgNPs (e.g., size, coating) may influence their cytotoxic effects, but their correlation with DNA damage and mitotic disorders remains poorly explored. In this study, human keratinocytes (HaCaT cell line) were exposed to well-characterized 30 nm AgNPs coated with citrate, and their effects on viability, DNA fragmentation (assessed by the comet assay), and micronuclei (MNi) induction (assessed by the cytokinesis-block micronucleus cytome assays, CBMN) were investigated. The results showed that 10 and 40 μg/mL AgNPs decreased cell proliferation and viability, and induced a significant genetic damage. This was observed by an increase of DNA amount in comet tail, which linearly correlated with dose and time of exposure. Also, cytostaticity (increase of mononucleated cells) and MNi rates increased in treated cells. In contrast, no significant changes were observed in nucleoplasmatic bridges (NPBs) or nuclear buds (NBUDs), although NBUDs tended to increase in all conditions and periods. The cytostatic effects on HaCaT cells were also shown by the decrease of their nuclear division index. Thus, both comet and CBMN assays supported the observation that citrate-AgNPs induced genotoxic effects on HaCaT cells. Considering that AgNPs are present in a vast number of consumer products and also in multiple nanomedicine skin applications and formulations, more research is needed to determine the properties that confer less toxicity of AgNPs to different cell lines. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-016-8240-6 |