Loading…
Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments
Simulation models for perennial energy crops such as switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus) can be useful tools to design management strategies for biomass productivity improvement in US environments. The Agricultural Production Systems Simulator (APSIM) is a bioph...
Saved in:
Published in: | Global change biology. Bioenergy 2017-04, Vol.9 (4), p.796-816 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4374-c33b834af80e0cb17065b9304f823006e0c0919783e71afc06de67fe2695938b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4374-c33b834af80e0cb17065b9304f823006e0c0919783e71afc06de67fe2695938b3 |
container_end_page | 816 |
container_issue | 4 |
container_start_page | 796 |
container_title | Global change biology. Bioenergy |
container_volume | 9 |
creator | Ojeda, Jonathan J. Volenec, Jeffrey J. Brouder, Sylvie M. Caviglia, Octavio P. Agnusdei, Mónica G. |
description | Simulation models for perennial energy crops such as switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus) can be useful tools to design management strategies for biomass productivity improvement in US environments. The Agricultural Production Systems Simulator (APSIM) is a biophysical model with the potential to simulate the growth of perennial crops. APSIM crop modules do not exist for switchgrass and Miscanthus, however, re‐parameterization of existing APSIM modules could be used to simulate the growth of these perennials. Our aim was to evaluate the ability of APSIM to predict the dry matter (DM) yield of switchgrass and Miscanthus at several US locations. The Lucerne (for switchgrass) and Sugarcane (for Miscanthus) APSIM modules were calibrated using data from four locations in Indiana. A sensitivity analysis informed the relative impact of changes in plant and soil parameters of APSIM Lucerne and APSIM Sugarcane modules. An independent dataset of switchgrass and Miscanthus DM yields from several US environments was used to validate these re‐parameterized APSIM modules. The re‐parameterized modules simulated DM yields of switchgrass [0.95 for CCC (concordance correlation coefficient) and 0 for SB (bias of the simulation from the measurement)] and Miscanthus (0.65 and 0% for CCC and SB, respectively) accurately at most locations with the exception of switchgrass at southern US sites (0.01 for CCC and 2% for SB). Therefore, the APSIM model is a promising tool for simulating DM yields for switchgrass and Miscanthus while accounting for environmental variability. Given our study was strictly based on APSIM calibrations at Indiana locations, additional research using more extensive calibration data may enhance APSIM robustness. |
doi_str_mv | 10.1111/gcbb.12384 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1881767817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1881767817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4374-c33b834af80e0cb17065b9304f823006e0c0919783e71afc06de67fe2695938b3</originalsourceid><addsrcrecordid>eNp9kc1u3CAUha0qkfLXTZ4AKZuo0qRgPAYvk1GSVkrVkaazRhhfu0QYJmCmnffIA_dOptl0URZwdPkO3KtTFJeM3jBcnwfTtjes5LL6UJwyMRczJqg4etd1w0-Ks5SeKa3nNWtOi9f7rXZZTzZ4EnpyO0Rrspty1I4sY-iyebta7dIEYyIrO2anpxCJTmRnwXVkE6GzZl9C_1J79I9ka-OgJxTad-SbTUb76WdO5DcZ7IAaUFtPEmxh_9N6RcCjJ_gR_JQuiuNeuwQf_57nxfrh_sfiy-zp--PXxe3TzFRcVDPDeSt5pXtJgZoWJ63nbcNp1cuS44RYpA1rhOQgmO4NrTuoRQ9l3cwbLlt-Xlwf3t3E8JIhTWrEVsE57SHkpJiUTNQCN0Sv_kGfQ44eu1Nl2VCKDXGJ1KcDZWJIKUKvNtGOOu4Uo2ofkNoHpN4CQpgd4F_Wwe4_pHpc3N0dPH8AN-CU3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290043738</pqid></control><display><type>article</type><title>Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Ojeda, Jonathan J. ; Volenec, Jeffrey J. ; Brouder, Sylvie M. ; Caviglia, Octavio P. ; Agnusdei, Mónica G.</creator><creatorcontrib>Ojeda, Jonathan J. ; Volenec, Jeffrey J. ; Brouder, Sylvie M. ; Caviglia, Octavio P. ; Agnusdei, Mónica G.</creatorcontrib><description>Simulation models for perennial energy crops such as switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus) can be useful tools to design management strategies for biomass productivity improvement in US environments. The Agricultural Production Systems Simulator (APSIM) is a biophysical model with the potential to simulate the growth of perennial crops. APSIM crop modules do not exist for switchgrass and Miscanthus, however, re‐parameterization of existing APSIM modules could be used to simulate the growth of these perennials. Our aim was to evaluate the ability of APSIM to predict the dry matter (DM) yield of switchgrass and Miscanthus at several US locations. The Lucerne (for switchgrass) and Sugarcane (for Miscanthus) APSIM modules were calibrated using data from four locations in Indiana. A sensitivity analysis informed the relative impact of changes in plant and soil parameters of APSIM Lucerne and APSIM Sugarcane modules. An independent dataset of switchgrass and Miscanthus DM yields from several US environments was used to validate these re‐parameterized APSIM modules. The re‐parameterized modules simulated DM yields of switchgrass [0.95 for CCC (concordance correlation coefficient) and 0 for SB (bias of the simulation from the measurement)] and Miscanthus (0.65 and 0% for CCC and SB, respectively) accurately at most locations with the exception of switchgrass at southern US sites (0.01 for CCC and 2% for SB). Therefore, the APSIM model is a promising tool for simulating DM yields for switchgrass and Miscanthus while accounting for environmental variability. Given our study was strictly based on APSIM calibrations at Indiana locations, additional research using more extensive calibration data may enhance APSIM robustness.</description><identifier>ISSN: 1757-1693</identifier><identifier>EISSN: 1757-1707</identifier><identifier>DOI: 10.1111/gcbb.12384</identifier><language>eng</language><publisher>Oxford: John Wiley & Sons, Inc</publisher><subject>Accuracy ; Agricultural management ; Agricultural production ; Agricultural Production Systems Simulator ; Alternative energy sources ; bioenergy ; Biomass ; Calibration ; Computer simulation ; Correlation coefficient ; Correlation coefficients ; Crop yield ; Crops ; Datasets ; Dry matter ; Environment models ; Environmental management ; Miscanthus ; model re‐parameterization ; Modules ; Panicum virgatum ; Parameterization ; Perennial crops ; Rain ; Sensitivity analysis ; Simulation ; Studies ; Sugarcane ; switchgrass ; Temperature effects ; United States</subject><ispartof>Global change biology. Bioenergy, 2017-04, Vol.9 (4), p.796-816</ispartof><rights>2016 The Authors. Published by John Wiley & Sons Ltd.</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4374-c33b834af80e0cb17065b9304f823006e0c0919783e71afc06de67fe2695938b3</citedby><cites>FETCH-LOGICAL-c4374-c33b834af80e0cb17065b9304f823006e0c0919783e71afc06de67fe2695938b3</cites><orcidid>0000-0002-9172-0059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2290043738/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2290043738?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,11542,25732,27903,27904,36991,36992,44569,46031,46455,74873</link.rule.ids></links><search><creatorcontrib>Ojeda, Jonathan J.</creatorcontrib><creatorcontrib>Volenec, Jeffrey J.</creatorcontrib><creatorcontrib>Brouder, Sylvie M.</creatorcontrib><creatorcontrib>Caviglia, Octavio P.</creatorcontrib><creatorcontrib>Agnusdei, Mónica G.</creatorcontrib><title>Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments</title><title>Global change biology. Bioenergy</title><description>Simulation models for perennial energy crops such as switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus) can be useful tools to design management strategies for biomass productivity improvement in US environments. The Agricultural Production Systems Simulator (APSIM) is a biophysical model with the potential to simulate the growth of perennial crops. APSIM crop modules do not exist for switchgrass and Miscanthus, however, re‐parameterization of existing APSIM modules could be used to simulate the growth of these perennials. Our aim was to evaluate the ability of APSIM to predict the dry matter (DM) yield of switchgrass and Miscanthus at several US locations. The Lucerne (for switchgrass) and Sugarcane (for Miscanthus) APSIM modules were calibrated using data from four locations in Indiana. A sensitivity analysis informed the relative impact of changes in plant and soil parameters of APSIM Lucerne and APSIM Sugarcane modules. An independent dataset of switchgrass and Miscanthus DM yields from several US environments was used to validate these re‐parameterized APSIM modules. The re‐parameterized modules simulated DM yields of switchgrass [0.95 for CCC (concordance correlation coefficient) and 0 for SB (bias of the simulation from the measurement)] and Miscanthus (0.65 and 0% for CCC and SB, respectively) accurately at most locations with the exception of switchgrass at southern US sites (0.01 for CCC and 2% for SB). Therefore, the APSIM model is a promising tool for simulating DM yields for switchgrass and Miscanthus while accounting for environmental variability. Given our study was strictly based on APSIM calibrations at Indiana locations, additional research using more extensive calibration data may enhance APSIM robustness.</description><subject>Accuracy</subject><subject>Agricultural management</subject><subject>Agricultural production</subject><subject>Agricultural Production Systems Simulator</subject><subject>Alternative energy sources</subject><subject>bioenergy</subject><subject>Biomass</subject><subject>Calibration</subject><subject>Computer simulation</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Crop yield</subject><subject>Crops</subject><subject>Datasets</subject><subject>Dry matter</subject><subject>Environment models</subject><subject>Environmental management</subject><subject>Miscanthus</subject><subject>model re‐parameterization</subject><subject>Modules</subject><subject>Panicum virgatum</subject><subject>Parameterization</subject><subject>Perennial crops</subject><subject>Rain</subject><subject>Sensitivity analysis</subject><subject>Simulation</subject><subject>Studies</subject><subject>Sugarcane</subject><subject>switchgrass</subject><subject>Temperature effects</subject><subject>United States</subject><issn>1757-1693</issn><issn>1757-1707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp9kc1u3CAUha0qkfLXTZ4AKZuo0qRgPAYvk1GSVkrVkaazRhhfu0QYJmCmnffIA_dOptl0URZwdPkO3KtTFJeM3jBcnwfTtjes5LL6UJwyMRczJqg4etd1w0-Ks5SeKa3nNWtOi9f7rXZZTzZ4EnpyO0Rrspty1I4sY-iyebta7dIEYyIrO2anpxCJTmRnwXVkE6GzZl9C_1J79I9ka-OgJxTad-SbTUb76WdO5DcZ7IAaUFtPEmxh_9N6RcCjJ_gR_JQuiuNeuwQf_57nxfrh_sfiy-zp--PXxe3TzFRcVDPDeSt5pXtJgZoWJ63nbcNp1cuS44RYpA1rhOQgmO4NrTuoRQ9l3cwbLlt-Xlwf3t3E8JIhTWrEVsE57SHkpJiUTNQCN0Sv_kGfQ44eu1Nl2VCKDXGJ1KcDZWJIKUKvNtGOOu4Uo2ofkNoHpN4CQpgd4F_Wwe4_pHpc3N0dPH8AN-CU3Q</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Ojeda, Jonathan J.</creator><creator>Volenec, Jeffrey J.</creator><creator>Brouder, Sylvie M.</creator><creator>Caviglia, Octavio P.</creator><creator>Agnusdei, Mónica G.</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9172-0059</orcidid></search><sort><creationdate>201704</creationdate><title>Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments</title><author>Ojeda, Jonathan J. ; Volenec, Jeffrey J. ; Brouder, Sylvie M. ; Caviglia, Octavio P. ; Agnusdei, Mónica G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4374-c33b834af80e0cb17065b9304f823006e0c0919783e71afc06de67fe2695938b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Agricultural management</topic><topic>Agricultural production</topic><topic>Agricultural Production Systems Simulator</topic><topic>Alternative energy sources</topic><topic>bioenergy</topic><topic>Biomass</topic><topic>Calibration</topic><topic>Computer simulation</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Crop yield</topic><topic>Crops</topic><topic>Datasets</topic><topic>Dry matter</topic><topic>Environment models</topic><topic>Environmental management</topic><topic>Miscanthus</topic><topic>model re‐parameterization</topic><topic>Modules</topic><topic>Panicum virgatum</topic><topic>Parameterization</topic><topic>Perennial crops</topic><topic>Rain</topic><topic>Sensitivity analysis</topic><topic>Simulation</topic><topic>Studies</topic><topic>Sugarcane</topic><topic>switchgrass</topic><topic>Temperature effects</topic><topic>United States</topic><toplevel>online_resources</toplevel><creatorcontrib>Ojeda, Jonathan J.</creatorcontrib><creatorcontrib>Volenec, Jeffrey J.</creatorcontrib><creatorcontrib>Brouder, Sylvie M.</creatorcontrib><creatorcontrib>Caviglia, Octavio P.</creatorcontrib><creatorcontrib>Agnusdei, Mónica G.</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Free Archive</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Global change biology. Bioenergy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ojeda, Jonathan J.</au><au>Volenec, Jeffrey J.</au><au>Brouder, Sylvie M.</au><au>Caviglia, Octavio P.</au><au>Agnusdei, Mónica G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments</atitle><jtitle>Global change biology. Bioenergy</jtitle><date>2017-04</date><risdate>2017</risdate><volume>9</volume><issue>4</issue><spage>796</spage><epage>816</epage><pages>796-816</pages><issn>1757-1693</issn><eissn>1757-1707</eissn><abstract>Simulation models for perennial energy crops such as switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus) can be useful tools to design management strategies for biomass productivity improvement in US environments. The Agricultural Production Systems Simulator (APSIM) is a biophysical model with the potential to simulate the growth of perennial crops. APSIM crop modules do not exist for switchgrass and Miscanthus, however, re‐parameterization of existing APSIM modules could be used to simulate the growth of these perennials. Our aim was to evaluate the ability of APSIM to predict the dry matter (DM) yield of switchgrass and Miscanthus at several US locations. The Lucerne (for switchgrass) and Sugarcane (for Miscanthus) APSIM modules were calibrated using data from four locations in Indiana. A sensitivity analysis informed the relative impact of changes in plant and soil parameters of APSIM Lucerne and APSIM Sugarcane modules. An independent dataset of switchgrass and Miscanthus DM yields from several US environments was used to validate these re‐parameterized APSIM modules. The re‐parameterized modules simulated DM yields of switchgrass [0.95 for CCC (concordance correlation coefficient) and 0 for SB (bias of the simulation from the measurement)] and Miscanthus (0.65 and 0% for CCC and SB, respectively) accurately at most locations with the exception of switchgrass at southern US sites (0.01 for CCC and 2% for SB). Therefore, the APSIM model is a promising tool for simulating DM yields for switchgrass and Miscanthus while accounting for environmental variability. Given our study was strictly based on APSIM calibrations at Indiana locations, additional research using more extensive calibration data may enhance APSIM robustness.</abstract><cop>Oxford</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1111/gcbb.12384</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-9172-0059</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-1693 |
ispartof | Global change biology. Bioenergy, 2017-04, Vol.9 (4), p.796-816 |
issn | 1757-1693 1757-1707 |
language | eng |
recordid | cdi_proquest_miscellaneous_1881767817 |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Accuracy Agricultural management Agricultural production Agricultural Production Systems Simulator Alternative energy sources bioenergy Biomass Calibration Computer simulation Correlation coefficient Correlation coefficients Crop yield Crops Datasets Dry matter Environment models Environmental management Miscanthus model re‐parameterization Modules Panicum virgatum Parameterization Perennial crops Rain Sensitivity analysis Simulation Studies Sugarcane switchgrass Temperature effects United States |
title | Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A25%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Agricultural%20Production%20Systems%20Simulator%20as%20yield%20predictor%20of%20Panicum%20virgatum%20and%20Miscanthus%20x%20giganteus%20in%20several%20US%20environments&rft.jtitle=Global%20change%20biology.%20Bioenergy&rft.au=Ojeda,%20Jonathan%20J.&rft.date=2017-04&rft.volume=9&rft.issue=4&rft.spage=796&rft.epage=816&rft.pages=796-816&rft.issn=1757-1693&rft.eissn=1757-1707&rft_id=info:doi/10.1111/gcbb.12384&rft_dat=%3Cproquest_cross%3E1881767817%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4374-c33b834af80e0cb17065b9304f823006e0c0919783e71afc06de67fe2695938b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2290043738&rft_id=info:pmid/&rfr_iscdi=true |