Loading…
Strain Engineering for Anion Arrangement in Perovskite Oxynitrides
Mixed-anion perovskites such as oxynitrides, oxyfluorides, and oxyhydrides have flexibility in their anion arrangements, which potentially enables functional material design based on coordination chemistry. However, difficulty in the control of the anion arrangement has prevented the realization of...
Saved in:
Published in: | ACS nano 2017-04, Vol.11 (4), p.3860-3866 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a399t-7c2922e98c97bed6e56204b929793ab892b9c2a28b3fe83b16ad4f9587faa22f3 |
---|---|
cites | cdi_FETCH-LOGICAL-a399t-7c2922e98c97bed6e56204b929793ab892b9c2a28b3fe83b16ad4f9587faa22f3 |
container_end_page | 3866 |
container_issue | 4 |
container_start_page | 3860 |
container_title | ACS nano |
container_volume | 11 |
creator | Oka, Daichi Hirose, Yasushi Matsui, Fumihiko Kamisaka, Hideyuki Oguchi, Tamio Maejima, Naoyuki Nishikawa, Hiroaki Muro, Takayuki Hayashi, Kouichi Hasegawa, Tetsuya |
description | Mixed-anion perovskites such as oxynitrides, oxyfluorides, and oxyhydrides have flexibility in their anion arrangements, which potentially enables functional material design based on coordination chemistry. However, difficulty in the control of the anion arrangement has prevented the realization of this concept. In this study, we demonstrate strain engineering of the anion arrangement in epitaxial thin films of the Ca1–x Sr x TaO2N perovskite oxynitrides. Under compressive epitaxial strain, the axial sites in TaO4N2 octahedra tend to be occupied by nitrogen rather than oxygen, which was revealed by N and O K-edge linearly polarized X-ray absorption near-edge structure (LP-XANES) and scanning transmission electron microscopy combined with electron energy loss spectroscopy. Furthermore, detailed analysis of the LP-XANES indicated that the high occupancy of nitrogen at the axial sites is due to the partial formation of a metastable trans-type anion configuration. These results are expected to serve as a guide for the material design of mixed-anion compounds based on their anion arrangements. |
doi_str_mv | 10.1021/acsnano.7b00144 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1881774237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1881774237</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-7c2922e98c97bed6e56204b929793ab892b9c2a28b3fe83b16ad4f9587faa22f3</originalsourceid><addsrcrecordid>eNp1kM1LwzAYxoMobk7P3qRHQbrlo22S4xzzA4QJKngLSft2ZG7JTFpx_72V1d08vc_h9zzw_hC6JHhMMCUTXUannR9zgzHJsiM0JJIVKRbF-_Eh52SAzmJcYZxzwYtTNKCCZZxkeIhuX5qgrUvmbmkdQLBumdQ-JFNnvUumIWi3hA24JumgZwj-K37YBpLF987ZJtgK4jk6qfU6wkV_R-jtbv46e0ifFvePs-lTqpmUTcpLKikFKUrJDVQF5AXFmZFUcsm0EZIaWVJNhWE1CGZIoauslrngtdaU1myErve72-A_W4iN2thYwnqtHfg2KiIE4TyjjHfoZI-WwccYoFbbYDc67BTB6lec6sWpXlzXuOrHW7OB6sD_meqAmz3QNdXKt8F1v_479wMa2Hla</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881774237</pqid></control><display><type>article</type><title>Strain Engineering for Anion Arrangement in Perovskite Oxynitrides</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Oka, Daichi ; Hirose, Yasushi ; Matsui, Fumihiko ; Kamisaka, Hideyuki ; Oguchi, Tamio ; Maejima, Naoyuki ; Nishikawa, Hiroaki ; Muro, Takayuki ; Hayashi, Kouichi ; Hasegawa, Tetsuya</creator><creatorcontrib>Oka, Daichi ; Hirose, Yasushi ; Matsui, Fumihiko ; Kamisaka, Hideyuki ; Oguchi, Tamio ; Maejima, Naoyuki ; Nishikawa, Hiroaki ; Muro, Takayuki ; Hayashi, Kouichi ; Hasegawa, Tetsuya</creatorcontrib><description>Mixed-anion perovskites such as oxynitrides, oxyfluorides, and oxyhydrides have flexibility in their anion arrangements, which potentially enables functional material design based on coordination chemistry. However, difficulty in the control of the anion arrangement has prevented the realization of this concept. In this study, we demonstrate strain engineering of the anion arrangement in epitaxial thin films of the Ca1–x Sr x TaO2N perovskite oxynitrides. Under compressive epitaxial strain, the axial sites in TaO4N2 octahedra tend to be occupied by nitrogen rather than oxygen, which was revealed by N and O K-edge linearly polarized X-ray absorption near-edge structure (LP-XANES) and scanning transmission electron microscopy combined with electron energy loss spectroscopy. Furthermore, detailed analysis of the LP-XANES indicated that the high occupancy of nitrogen at the axial sites is due to the partial formation of a metastable trans-type anion configuration. These results are expected to serve as a guide for the material design of mixed-anion compounds based on their anion arrangements.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.7b00144</identifier><identifier>PMID: 28347140</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2017-04, Vol.11 (4), p.3860-3866</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-7c2922e98c97bed6e56204b929793ab892b9c2a28b3fe83b16ad4f9587faa22f3</citedby><cites>FETCH-LOGICAL-a399t-7c2922e98c97bed6e56204b929793ab892b9c2a28b3fe83b16ad4f9587faa22f3</cites><orcidid>0000-0002-2398-4650 ; 0000-0003-2747-9675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28347140$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oka, Daichi</creatorcontrib><creatorcontrib>Hirose, Yasushi</creatorcontrib><creatorcontrib>Matsui, Fumihiko</creatorcontrib><creatorcontrib>Kamisaka, Hideyuki</creatorcontrib><creatorcontrib>Oguchi, Tamio</creatorcontrib><creatorcontrib>Maejima, Naoyuki</creatorcontrib><creatorcontrib>Nishikawa, Hiroaki</creatorcontrib><creatorcontrib>Muro, Takayuki</creatorcontrib><creatorcontrib>Hayashi, Kouichi</creatorcontrib><creatorcontrib>Hasegawa, Tetsuya</creatorcontrib><title>Strain Engineering for Anion Arrangement in Perovskite Oxynitrides</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Mixed-anion perovskites such as oxynitrides, oxyfluorides, and oxyhydrides have flexibility in their anion arrangements, which potentially enables functional material design based on coordination chemistry. However, difficulty in the control of the anion arrangement has prevented the realization of this concept. In this study, we demonstrate strain engineering of the anion arrangement in epitaxial thin films of the Ca1–x Sr x TaO2N perovskite oxynitrides. Under compressive epitaxial strain, the axial sites in TaO4N2 octahedra tend to be occupied by nitrogen rather than oxygen, which was revealed by N and O K-edge linearly polarized X-ray absorption near-edge structure (LP-XANES) and scanning transmission electron microscopy combined with electron energy loss spectroscopy. Furthermore, detailed analysis of the LP-XANES indicated that the high occupancy of nitrogen at the axial sites is due to the partial formation of a metastable trans-type anion configuration. These results are expected to serve as a guide for the material design of mixed-anion compounds based on their anion arrangements.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LwzAYxoMobk7P3qRHQbrlo22S4xzzA4QJKngLSft2ZG7JTFpx_72V1d08vc_h9zzw_hC6JHhMMCUTXUannR9zgzHJsiM0JJIVKRbF-_Eh52SAzmJcYZxzwYtTNKCCZZxkeIhuX5qgrUvmbmkdQLBumdQ-JFNnvUumIWi3hA24JumgZwj-K37YBpLF987ZJtgK4jk6qfU6wkV_R-jtbv46e0ifFvePs-lTqpmUTcpLKikFKUrJDVQF5AXFmZFUcsm0EZIaWVJNhWE1CGZIoauslrngtdaU1myErve72-A_W4iN2thYwnqtHfg2KiIE4TyjjHfoZI-WwccYoFbbYDc67BTB6lec6sWpXlzXuOrHW7OB6sD_meqAmz3QNdXKt8F1v_479wMa2Hla</recordid><startdate>20170425</startdate><enddate>20170425</enddate><creator>Oka, Daichi</creator><creator>Hirose, Yasushi</creator><creator>Matsui, Fumihiko</creator><creator>Kamisaka, Hideyuki</creator><creator>Oguchi, Tamio</creator><creator>Maejima, Naoyuki</creator><creator>Nishikawa, Hiroaki</creator><creator>Muro, Takayuki</creator><creator>Hayashi, Kouichi</creator><creator>Hasegawa, Tetsuya</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2398-4650</orcidid><orcidid>https://orcid.org/0000-0003-2747-9675</orcidid></search><sort><creationdate>20170425</creationdate><title>Strain Engineering for Anion Arrangement in Perovskite Oxynitrides</title><author>Oka, Daichi ; Hirose, Yasushi ; Matsui, Fumihiko ; Kamisaka, Hideyuki ; Oguchi, Tamio ; Maejima, Naoyuki ; Nishikawa, Hiroaki ; Muro, Takayuki ; Hayashi, Kouichi ; Hasegawa, Tetsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-7c2922e98c97bed6e56204b929793ab892b9c2a28b3fe83b16ad4f9587faa22f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oka, Daichi</creatorcontrib><creatorcontrib>Hirose, Yasushi</creatorcontrib><creatorcontrib>Matsui, Fumihiko</creatorcontrib><creatorcontrib>Kamisaka, Hideyuki</creatorcontrib><creatorcontrib>Oguchi, Tamio</creatorcontrib><creatorcontrib>Maejima, Naoyuki</creatorcontrib><creatorcontrib>Nishikawa, Hiroaki</creatorcontrib><creatorcontrib>Muro, Takayuki</creatorcontrib><creatorcontrib>Hayashi, Kouichi</creatorcontrib><creatorcontrib>Hasegawa, Tetsuya</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oka, Daichi</au><au>Hirose, Yasushi</au><au>Matsui, Fumihiko</au><au>Kamisaka, Hideyuki</au><au>Oguchi, Tamio</au><au>Maejima, Naoyuki</au><au>Nishikawa, Hiroaki</au><au>Muro, Takayuki</au><au>Hayashi, Kouichi</au><au>Hasegawa, Tetsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain Engineering for Anion Arrangement in Perovskite Oxynitrides</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2017-04-25</date><risdate>2017</risdate><volume>11</volume><issue>4</issue><spage>3860</spage><epage>3866</epage><pages>3860-3866</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Mixed-anion perovskites such as oxynitrides, oxyfluorides, and oxyhydrides have flexibility in their anion arrangements, which potentially enables functional material design based on coordination chemistry. However, difficulty in the control of the anion arrangement has prevented the realization of this concept. In this study, we demonstrate strain engineering of the anion arrangement in epitaxial thin films of the Ca1–x Sr x TaO2N perovskite oxynitrides. Under compressive epitaxial strain, the axial sites in TaO4N2 octahedra tend to be occupied by nitrogen rather than oxygen, which was revealed by N and O K-edge linearly polarized X-ray absorption near-edge structure (LP-XANES) and scanning transmission electron microscopy combined with electron energy loss spectroscopy. Furthermore, detailed analysis of the LP-XANES indicated that the high occupancy of nitrogen at the axial sites is due to the partial formation of a metastable trans-type anion configuration. These results are expected to serve as a guide for the material design of mixed-anion compounds based on their anion arrangements.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28347140</pmid><doi>10.1021/acsnano.7b00144</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2398-4650</orcidid><orcidid>https://orcid.org/0000-0003-2747-9675</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2017-04, Vol.11 (4), p.3860-3866 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1881774237 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Strain Engineering for Anion Arrangement in Perovskite Oxynitrides |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A30%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20Engineering%20for%20Anion%20Arrangement%20in%20Perovskite%20Oxynitrides&rft.jtitle=ACS%20nano&rft.au=Oka,%20Daichi&rft.date=2017-04-25&rft.volume=11&rft.issue=4&rft.spage=3860&rft.epage=3866&rft.pages=3860-3866&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.7b00144&rft_dat=%3Cproquest_cross%3E1881774237%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a399t-7c2922e98c97bed6e56204b929793ab892b9c2a28b3fe83b16ad4f9587faa22f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1881774237&rft_id=info:pmid/28347140&rfr_iscdi=true |