Loading…

Strain Engineering for Anion Arrangement in Perovskite Oxynitrides

Mixed-anion perovskites such as oxynitrides, oxyfluorides, and oxyhydrides have flexibility in their anion arrangements, which potentially enables functional material design based on coordination chemistry. However, difficulty in the control of the anion arrangement has prevented the realization of...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2017-04, Vol.11 (4), p.3860-3866
Main Authors: Oka, Daichi, Hirose, Yasushi, Matsui, Fumihiko, Kamisaka, Hideyuki, Oguchi, Tamio, Maejima, Naoyuki, Nishikawa, Hiroaki, Muro, Takayuki, Hayashi, Kouichi, Hasegawa, Tetsuya
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a399t-7c2922e98c97bed6e56204b929793ab892b9c2a28b3fe83b16ad4f9587faa22f3
cites cdi_FETCH-LOGICAL-a399t-7c2922e98c97bed6e56204b929793ab892b9c2a28b3fe83b16ad4f9587faa22f3
container_end_page 3866
container_issue 4
container_start_page 3860
container_title ACS nano
container_volume 11
creator Oka, Daichi
Hirose, Yasushi
Matsui, Fumihiko
Kamisaka, Hideyuki
Oguchi, Tamio
Maejima, Naoyuki
Nishikawa, Hiroaki
Muro, Takayuki
Hayashi, Kouichi
Hasegawa, Tetsuya
description Mixed-anion perovskites such as oxynitrides, oxyfluorides, and oxyhydrides have flexibility in their anion arrangements, which potentially enables functional material design based on coordination chemistry. However, difficulty in the control of the anion arrangement has prevented the realization of this concept. In this study, we demonstrate strain engineering of the anion arrangement in epitaxial thin films of the Ca1–x Sr x TaO2N perovskite oxynitrides. Under compressive epitaxial strain, the axial sites in TaO4N2 octahedra tend to be occupied by nitrogen rather than oxygen, which was revealed by N and O K-edge linearly polarized X-ray absorption near-edge structure (LP-XANES) and scanning transmission electron microscopy combined with electron energy loss spectroscopy. Furthermore, detailed analysis of the LP-XANES indicated that the high occupancy of nitrogen at the axial sites is due to the partial formation of a metastable trans-type anion configuration. These results are expected to serve as a guide for the material design of mixed-anion compounds based on their anion arrangements.
doi_str_mv 10.1021/acsnano.7b00144
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1881774237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1881774237</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-7c2922e98c97bed6e56204b929793ab892b9c2a28b3fe83b16ad4f9587faa22f3</originalsourceid><addsrcrecordid>eNp1kM1LwzAYxoMobk7P3qRHQbrlo22S4xzzA4QJKngLSft2ZG7JTFpx_72V1d08vc_h9zzw_hC6JHhMMCUTXUannR9zgzHJsiM0JJIVKRbF-_Eh52SAzmJcYZxzwYtTNKCCZZxkeIhuX5qgrUvmbmkdQLBumdQ-JFNnvUumIWi3hA24JumgZwj-K37YBpLF987ZJtgK4jk6qfU6wkV_R-jtbv46e0ifFvePs-lTqpmUTcpLKikFKUrJDVQF5AXFmZFUcsm0EZIaWVJNhWE1CGZIoauslrngtdaU1myErve72-A_W4iN2thYwnqtHfg2KiIE4TyjjHfoZI-WwccYoFbbYDc67BTB6lec6sWpXlzXuOrHW7OB6sD_meqAmz3QNdXKt8F1v_479wMa2Hla</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881774237</pqid></control><display><type>article</type><title>Strain Engineering for Anion Arrangement in Perovskite Oxynitrides</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Oka, Daichi ; Hirose, Yasushi ; Matsui, Fumihiko ; Kamisaka, Hideyuki ; Oguchi, Tamio ; Maejima, Naoyuki ; Nishikawa, Hiroaki ; Muro, Takayuki ; Hayashi, Kouichi ; Hasegawa, Tetsuya</creator><creatorcontrib>Oka, Daichi ; Hirose, Yasushi ; Matsui, Fumihiko ; Kamisaka, Hideyuki ; Oguchi, Tamio ; Maejima, Naoyuki ; Nishikawa, Hiroaki ; Muro, Takayuki ; Hayashi, Kouichi ; Hasegawa, Tetsuya</creatorcontrib><description>Mixed-anion perovskites such as oxynitrides, oxyfluorides, and oxyhydrides have flexibility in their anion arrangements, which potentially enables functional material design based on coordination chemistry. However, difficulty in the control of the anion arrangement has prevented the realization of this concept. In this study, we demonstrate strain engineering of the anion arrangement in epitaxial thin films of the Ca1–x Sr x TaO2N perovskite oxynitrides. Under compressive epitaxial strain, the axial sites in TaO4N2 octahedra tend to be occupied by nitrogen rather than oxygen, which was revealed by N and O K-edge linearly polarized X-ray absorption near-edge structure (LP-XANES) and scanning transmission electron microscopy combined with electron energy loss spectroscopy. Furthermore, detailed analysis of the LP-XANES indicated that the high occupancy of nitrogen at the axial sites is due to the partial formation of a metastable trans-type anion configuration. These results are expected to serve as a guide for the material design of mixed-anion compounds based on their anion arrangements.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.7b00144</identifier><identifier>PMID: 28347140</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2017-04, Vol.11 (4), p.3860-3866</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-7c2922e98c97bed6e56204b929793ab892b9c2a28b3fe83b16ad4f9587faa22f3</citedby><cites>FETCH-LOGICAL-a399t-7c2922e98c97bed6e56204b929793ab892b9c2a28b3fe83b16ad4f9587faa22f3</cites><orcidid>0000-0002-2398-4650 ; 0000-0003-2747-9675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28347140$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oka, Daichi</creatorcontrib><creatorcontrib>Hirose, Yasushi</creatorcontrib><creatorcontrib>Matsui, Fumihiko</creatorcontrib><creatorcontrib>Kamisaka, Hideyuki</creatorcontrib><creatorcontrib>Oguchi, Tamio</creatorcontrib><creatorcontrib>Maejima, Naoyuki</creatorcontrib><creatorcontrib>Nishikawa, Hiroaki</creatorcontrib><creatorcontrib>Muro, Takayuki</creatorcontrib><creatorcontrib>Hayashi, Kouichi</creatorcontrib><creatorcontrib>Hasegawa, Tetsuya</creatorcontrib><title>Strain Engineering for Anion Arrangement in Perovskite Oxynitrides</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Mixed-anion perovskites such as oxynitrides, oxyfluorides, and oxyhydrides have flexibility in their anion arrangements, which potentially enables functional material design based on coordination chemistry. However, difficulty in the control of the anion arrangement has prevented the realization of this concept. In this study, we demonstrate strain engineering of the anion arrangement in epitaxial thin films of the Ca1–x Sr x TaO2N perovskite oxynitrides. Under compressive epitaxial strain, the axial sites in TaO4N2 octahedra tend to be occupied by nitrogen rather than oxygen, which was revealed by N and O K-edge linearly polarized X-ray absorption near-edge structure (LP-XANES) and scanning transmission electron microscopy combined with electron energy loss spectroscopy. Furthermore, detailed analysis of the LP-XANES indicated that the high occupancy of nitrogen at the axial sites is due to the partial formation of a metastable trans-type anion configuration. These results are expected to serve as a guide for the material design of mixed-anion compounds based on their anion arrangements.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LwzAYxoMobk7P3qRHQbrlo22S4xzzA4QJKngLSft2ZG7JTFpx_72V1d08vc_h9zzw_hC6JHhMMCUTXUannR9zgzHJsiM0JJIVKRbF-_Eh52SAzmJcYZxzwYtTNKCCZZxkeIhuX5qgrUvmbmkdQLBumdQ-JFNnvUumIWi3hA24JumgZwj-K37YBpLF987ZJtgK4jk6qfU6wkV_R-jtbv46e0ifFvePs-lTqpmUTcpLKikFKUrJDVQF5AXFmZFUcsm0EZIaWVJNhWE1CGZIoauslrngtdaU1myErve72-A_W4iN2thYwnqtHfg2KiIE4TyjjHfoZI-WwccYoFbbYDc67BTB6lec6sWpXlzXuOrHW7OB6sD_meqAmz3QNdXKt8F1v_479wMa2Hla</recordid><startdate>20170425</startdate><enddate>20170425</enddate><creator>Oka, Daichi</creator><creator>Hirose, Yasushi</creator><creator>Matsui, Fumihiko</creator><creator>Kamisaka, Hideyuki</creator><creator>Oguchi, Tamio</creator><creator>Maejima, Naoyuki</creator><creator>Nishikawa, Hiroaki</creator><creator>Muro, Takayuki</creator><creator>Hayashi, Kouichi</creator><creator>Hasegawa, Tetsuya</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2398-4650</orcidid><orcidid>https://orcid.org/0000-0003-2747-9675</orcidid></search><sort><creationdate>20170425</creationdate><title>Strain Engineering for Anion Arrangement in Perovskite Oxynitrides</title><author>Oka, Daichi ; Hirose, Yasushi ; Matsui, Fumihiko ; Kamisaka, Hideyuki ; Oguchi, Tamio ; Maejima, Naoyuki ; Nishikawa, Hiroaki ; Muro, Takayuki ; Hayashi, Kouichi ; Hasegawa, Tetsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-7c2922e98c97bed6e56204b929793ab892b9c2a28b3fe83b16ad4f9587faa22f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oka, Daichi</creatorcontrib><creatorcontrib>Hirose, Yasushi</creatorcontrib><creatorcontrib>Matsui, Fumihiko</creatorcontrib><creatorcontrib>Kamisaka, Hideyuki</creatorcontrib><creatorcontrib>Oguchi, Tamio</creatorcontrib><creatorcontrib>Maejima, Naoyuki</creatorcontrib><creatorcontrib>Nishikawa, Hiroaki</creatorcontrib><creatorcontrib>Muro, Takayuki</creatorcontrib><creatorcontrib>Hayashi, Kouichi</creatorcontrib><creatorcontrib>Hasegawa, Tetsuya</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oka, Daichi</au><au>Hirose, Yasushi</au><au>Matsui, Fumihiko</au><au>Kamisaka, Hideyuki</au><au>Oguchi, Tamio</au><au>Maejima, Naoyuki</au><au>Nishikawa, Hiroaki</au><au>Muro, Takayuki</au><au>Hayashi, Kouichi</au><au>Hasegawa, Tetsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain Engineering for Anion Arrangement in Perovskite Oxynitrides</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2017-04-25</date><risdate>2017</risdate><volume>11</volume><issue>4</issue><spage>3860</spage><epage>3866</epage><pages>3860-3866</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Mixed-anion perovskites such as oxynitrides, oxyfluorides, and oxyhydrides have flexibility in their anion arrangements, which potentially enables functional material design based on coordination chemistry. However, difficulty in the control of the anion arrangement has prevented the realization of this concept. In this study, we demonstrate strain engineering of the anion arrangement in epitaxial thin films of the Ca1–x Sr x TaO2N perovskite oxynitrides. Under compressive epitaxial strain, the axial sites in TaO4N2 octahedra tend to be occupied by nitrogen rather than oxygen, which was revealed by N and O K-edge linearly polarized X-ray absorption near-edge structure (LP-XANES) and scanning transmission electron microscopy combined with electron energy loss spectroscopy. Furthermore, detailed analysis of the LP-XANES indicated that the high occupancy of nitrogen at the axial sites is due to the partial formation of a metastable trans-type anion configuration. These results are expected to serve as a guide for the material design of mixed-anion compounds based on their anion arrangements.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28347140</pmid><doi>10.1021/acsnano.7b00144</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2398-4650</orcidid><orcidid>https://orcid.org/0000-0003-2747-9675</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2017-04, Vol.11 (4), p.3860-3866
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1881774237
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Strain Engineering for Anion Arrangement in Perovskite Oxynitrides
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A30%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20Engineering%20for%20Anion%20Arrangement%20in%20Perovskite%20Oxynitrides&rft.jtitle=ACS%20nano&rft.au=Oka,%20Daichi&rft.date=2017-04-25&rft.volume=11&rft.issue=4&rft.spage=3860&rft.epage=3866&rft.pages=3860-3866&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.7b00144&rft_dat=%3Cproquest_cross%3E1881774237%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a399t-7c2922e98c97bed6e56204b929793ab892b9c2a28b3fe83b16ad4f9587faa22f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1881774237&rft_id=info:pmid/28347140&rfr_iscdi=true