Loading…

TgSUB2 is a Toxoplasma gondii rhoptry organelle processing proteinase

Summary All parasites in the phylum Apicomplexa, including Toxoplasma gondii and Plasmodium falciparum, contain rhoptries, specialized secretory organelles whose contents are thought to be essential for successful invasion of host cells. Serine proteinase inhibitors have been reported to block host...

Full description

Saved in:
Bibliographic Details
Published in:Molecular microbiology 2003-08, Vol.49 (4), p.883-894
Main Authors: Miller, Steven A., Thathy, Vandana, Ajioka, James W., Blackman, Michael J., Kim, Kami
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary All parasites in the phylum Apicomplexa, including Toxoplasma gondii and Plasmodium falciparum, contain rhoptries, specialized secretory organelles whose contents are thought to be essential for successful invasion of host cells. Serine proteinase inhibitors have been reported to block host cell invasion by both T. gondii and P. falciparum. We describe the cloning and characterization of TgSUB2, a subtilisin‐like serine proteinase, from T. gondii. Like its closest homologue P. falciparum PfSUB‐2, TgSUB2 is predicted to be a type I transmembrane protein. Disruption of TgSUB2 was unsuccessful implying that TgSUB2 is an essential gene. TgSUB2 undergoes autocatalytic processing as it traffics through the secretory pathway. TgSUB2 localizes to rhoptries and associates with rhoptry protein ROP1, a potential substrate. A sequence within TgSUB2 with homology to the ROP1 cleavage site (after Glu) was identified and mutated by site‐directed mutagenesis. This mutation abolished TgSUB2 autoprocessing suggesting that TgSUB2 is a rhoptry protein maturase with similar specificity to the ROP1 maturase. Processing of secretory organelle contents appears to be ubiquitous among the Apicomplexa. As subtilases are present in genomes of all the Apicomplexa sequenced to date, subtilases may represent a novel chemotherapeutic target.
ISSN:0950-382X
1365-2958
DOI:10.1046/j.1365-2958.2003.03604.x