Loading…

Nitrogen-regulated changes in total amino acid profile of maize genotypes having contrasting response to nitrogen deficit

Sustainable development of cellular organisms depends on a precise coordination between the carbon and nitrogen metabolisms within the living system. Inorganic N is assimilated into amino acids which serve as an important N source for various regulatory metabolic pathways in plants. This study inves...

Full description

Saved in:
Bibliographic Details
Published in:Protoplasma 2017-11, Vol.254 (6), p.2143-2153
Main Authors: Ganie, Arshid Hussain, Ahmad, Altaf, Yousuf, Peerzada Yasir, Pandey, Renu, Ahmad, Sayeed, Aref, Ibrahim M, Iqbal, Muhammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sustainable development of cellular organisms depends on a precise coordination between the carbon and nitrogen metabolisms within the living system. Inorganic N is assimilated into amino acids which serve as an important N source for various regulatory metabolic pathways in plants. This study investigates the role of amino acids in C/N balance by examining changes in amino acid profile in the leaves and roots of low-N-tolerant (PHEM-2) and low-N-sensitive (HM-4) maize genotypes grown hydroponically under N-sufficient (4.5 mM), N-deficient (0.05 mM) and N-restoration conditions. N application effectively altered the level of cysteine, methionine, asparagine, arginine, phenylalanine, glycine, glutamine, aspartate and glutamate in both genotypes. Under low N (0.05 mM), the asparagine and glutamine contents increased, while those of glutamate, phenylalanine and aspartate decreased in both genotypes. However, serine content increased in PHEM-2 but decreased in HM-4. Resupply of N to low-N-grown plants of both genotypes restored the amino acids level to that in the control; the restoration was quicker and more consistent in PHEM-2 than in HM-4. Based on alteration of amino acid level, a strategy can be developed to improve the ability of maize to adapt to low-N environments by way of an improved N utilization.
ISSN:0033-183X
1615-6102
DOI:10.1007/s00709-017-1106-z