Loading…

Effects of Cellular Electromechanical Coupling on Functional Heterogeneity in a One-Dimensional Tissue Model of the Myocardium

Abstract Based on the experimental evidence, we developed a one-dimensional (1D) model of heterogeneous myocardial tissue consisting of in-series connected cardiomyocytes from distant transmural regions using mathematical models of subendocardial and subepicardial cells. The regional deformation pat...

Full description

Saved in:
Bibliographic Details
Published in:Computers in biology and medicine 2017-05, Vol.84, p.147-155
Main Authors: Khokhlova, Anastasia, Balakina-Vikulova, Nathalie, Katsnelson, Leonid, Solovyova, Olga
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c494t-738819c99755b3a847860f740f125046d7dc30beecd6e0ad6343ac89d9b4404f3
cites cdi_FETCH-LOGICAL-c494t-738819c99755b3a847860f740f125046d7dc30beecd6e0ad6343ac89d9b4404f3
container_end_page 155
container_issue
container_start_page 147
container_title Computers in biology and medicine
container_volume 84
creator Khokhlova, Anastasia
Balakina-Vikulova, Nathalie
Katsnelson, Leonid
Solovyova, Olga
description Abstract Based on the experimental evidence, we developed a one-dimensional (1D) model of heterogeneous myocardial tissue consisting of in-series connected cardiomyocytes from distant transmural regions using mathematical models of subendocardial and subepicardial cells. The regional deformation patterns produced by our 1D model are consistent with the transmural regional strain patterns obtained experimentally in the normal heart in vivo. The modelling results suggest that the mechanical load may essentially affect the transmural gradients in the electrical and mechanical properties of interacting myocytes within a tissue, thereby regulating global myocardial output.
doi_str_mv 10.1016/j.compbiomed.2017.03.021
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1883844036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482517300768</els_id><sourcerecordid>1892784356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-738819c99755b3a847860f740f125046d7dc30beecd6e0ad6343ac89d9b4404f3</originalsourceid><addsrcrecordid>eNqNksFu1DAQQCMEokvhF5AlLlwSxrETOxckWLYUqagHytly7EnrJbEXO0HaC9-Oo21VqSdOlsdvZjR-UxSEQkWBth_2lQnToXdhQlvVQEUFrIKaPis2VIquhIbx58UGgELJZd2cFa9S2gMABwYvi7Naspa3nG-Kv7thQDMnEgayxXFcRh3JbsyhmIubO-2d0SPZhuUwOn9LgicXizezCz6HL3HGGG7Ro5uPxHmiybXH8oub0KcTcuNSWpB8DxbHtcl8ly_HYHS0bpleFy8GPSZ8c3-eFz8vdjfby_Lq-uu37aer0vCOz6VgUtLOdJ1omp5pyYVsYRAcBlo3wFsrrGHQIxrbImjbMs60kZ3tes6BD-y8eH-qe4jh94JpVpNLJs-rPYYlKSolkxllbUbfPUH3YYl5lJXqaiE5a1ZKnigTQ0oRB3WIbtLxqCio1ZHaq0dHanWkgKnsKKe-vW-w9OvbQ-KDlAx8PgGYf-SPw6iScegNWhezGGWD-58uH58UMVngKvMXHjE9zqRSrUD9WHdlXRUqGIBoJfsHuk-8zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1892784356</pqid></control><display><type>article</type><title>Effects of Cellular Electromechanical Coupling on Functional Heterogeneity in a One-Dimensional Tissue Model of the Myocardium</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Khokhlova, Anastasia ; Balakina-Vikulova, Nathalie ; Katsnelson, Leonid ; Solovyova, Olga</creator><creatorcontrib>Khokhlova, Anastasia ; Balakina-Vikulova, Nathalie ; Katsnelson, Leonid ; Solovyova, Olga</creatorcontrib><description>Abstract Based on the experimental evidence, we developed a one-dimensional (1D) model of heterogeneous myocardial tissue consisting of in-series connected cardiomyocytes from distant transmural regions using mathematical models of subendocardial and subepicardial cells. The regional deformation patterns produced by our 1D model are consistent with the transmural regional strain patterns obtained experimentally in the normal heart in vivo. The modelling results suggest that the mechanical load may essentially affect the transmural gradients in the electrical and mechanical properties of interacting myocytes within a tissue, thereby regulating global myocardial output.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2017.03.021</identifier><identifier>PMID: 28364644</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Action potential ; Anatomy ; Animal models ; Animals ; Aorta ; Biomechanical Phenomena - physiology ; Calcium ; Calcium-binding protein ; Cardiac arrhythmia ; Cardiac heterogeneity ; Cardiac mechanics ; Cardiac muscle ; Cardiomyocytes ; Cell culture ; Circuits ; Computer applications ; Deformation ; Deformation effects ; Depolarization ; Dogs ; Electromechanical coupling ; Excitation-contraction coupling ; Experimental data ; Feedback ; Guinea Pigs ; Heart ; Heart - physiology ; Heart diseases ; Heterogeneity ; Homogeneity ; Humans ; Internal Medicine ; Ion channels ; Magnetic resonance imaging ; Mechanical loading ; Mechanical properties ; Membrane currents ; Membrane potential ; Models, Cardiovascular ; Muscle contraction ; Myocardium ; Myocardium - cytology ; Myocytes, Cardiac - physiology ; NMR ; Nuclear magnetic resonance ; One dimensional models ; Other ; Propagation ; Pulmonary arteries ; Regional development ; Resonance ; Strain ; Velocity ; Ventricle</subject><ispartof>Computers in biology and medicine, 2017-05, Vol.84, p.147-155</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited May 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-738819c99755b3a847860f740f125046d7dc30beecd6e0ad6343ac89d9b4404f3</citedby><cites>FETCH-LOGICAL-c494t-738819c99755b3a847860f740f125046d7dc30beecd6e0ad6343ac89d9b4404f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28364644$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khokhlova, Anastasia</creatorcontrib><creatorcontrib>Balakina-Vikulova, Nathalie</creatorcontrib><creatorcontrib>Katsnelson, Leonid</creatorcontrib><creatorcontrib>Solovyova, Olga</creatorcontrib><title>Effects of Cellular Electromechanical Coupling on Functional Heterogeneity in a One-Dimensional Tissue Model of the Myocardium</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abstract Based on the experimental evidence, we developed a one-dimensional (1D) model of heterogeneous myocardial tissue consisting of in-series connected cardiomyocytes from distant transmural regions using mathematical models of subendocardial and subepicardial cells. The regional deformation patterns produced by our 1D model are consistent with the transmural regional strain patterns obtained experimentally in the normal heart in vivo. The modelling results suggest that the mechanical load may essentially affect the transmural gradients in the electrical and mechanical properties of interacting myocytes within a tissue, thereby regulating global myocardial output.</description><subject>Action potential</subject><subject>Anatomy</subject><subject>Animal models</subject><subject>Animals</subject><subject>Aorta</subject><subject>Biomechanical Phenomena - physiology</subject><subject>Calcium</subject><subject>Calcium-binding protein</subject><subject>Cardiac arrhythmia</subject><subject>Cardiac heterogeneity</subject><subject>Cardiac mechanics</subject><subject>Cardiac muscle</subject><subject>Cardiomyocytes</subject><subject>Cell culture</subject><subject>Circuits</subject><subject>Computer applications</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Depolarization</subject><subject>Dogs</subject><subject>Electromechanical coupling</subject><subject>Excitation-contraction coupling</subject><subject>Experimental data</subject><subject>Feedback</subject><subject>Guinea Pigs</subject><subject>Heart</subject><subject>Heart - physiology</subject><subject>Heart diseases</subject><subject>Heterogeneity</subject><subject>Homogeneity</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Ion channels</subject><subject>Magnetic resonance imaging</subject><subject>Mechanical loading</subject><subject>Mechanical properties</subject><subject>Membrane currents</subject><subject>Membrane potential</subject><subject>Models, Cardiovascular</subject><subject>Muscle contraction</subject><subject>Myocardium</subject><subject>Myocardium - cytology</subject><subject>Myocytes, Cardiac - physiology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>One dimensional models</subject><subject>Other</subject><subject>Propagation</subject><subject>Pulmonary arteries</subject><subject>Regional development</subject><subject>Resonance</subject><subject>Strain</subject><subject>Velocity</subject><subject>Ventricle</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNksFu1DAQQCMEokvhF5AlLlwSxrETOxckWLYUqagHytly7EnrJbEXO0HaC9-Oo21VqSdOlsdvZjR-UxSEQkWBth_2lQnToXdhQlvVQEUFrIKaPis2VIquhIbx58UGgELJZd2cFa9S2gMABwYvi7Naspa3nG-Kv7thQDMnEgayxXFcRh3JbsyhmIubO-2d0SPZhuUwOn9LgicXizezCz6HL3HGGG7Ro5uPxHmiybXH8oub0KcTcuNSWpB8DxbHtcl8ly_HYHS0bpleFy8GPSZ8c3-eFz8vdjfby_Lq-uu37aer0vCOz6VgUtLOdJ1omp5pyYVsYRAcBlo3wFsrrGHQIxrbImjbMs60kZ3tes6BD-y8eH-qe4jh94JpVpNLJs-rPYYlKSolkxllbUbfPUH3YYl5lJXqaiE5a1ZKnigTQ0oRB3WIbtLxqCio1ZHaq0dHanWkgKnsKKe-vW-w9OvbQ-KDlAx8PgGYf-SPw6iScegNWhezGGWD-58uH58UMVngKvMXHjE9zqRSrUD9WHdlXRUqGIBoJfsHuk-8zA</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Khokhlova, Anastasia</creator><creator>Balakina-Vikulova, Nathalie</creator><creator>Katsnelson, Leonid</creator><creator>Solovyova, Olga</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20170501</creationdate><title>Effects of Cellular Electromechanical Coupling on Functional Heterogeneity in a One-Dimensional Tissue Model of the Myocardium</title><author>Khokhlova, Anastasia ; Balakina-Vikulova, Nathalie ; Katsnelson, Leonid ; Solovyova, Olga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-738819c99755b3a847860f740f125046d7dc30beecd6e0ad6343ac89d9b4404f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Action potential</topic><topic>Anatomy</topic><topic>Animal models</topic><topic>Animals</topic><topic>Aorta</topic><topic>Biomechanical Phenomena - physiology</topic><topic>Calcium</topic><topic>Calcium-binding protein</topic><topic>Cardiac arrhythmia</topic><topic>Cardiac heterogeneity</topic><topic>Cardiac mechanics</topic><topic>Cardiac muscle</topic><topic>Cardiomyocytes</topic><topic>Cell culture</topic><topic>Circuits</topic><topic>Computer applications</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Depolarization</topic><topic>Dogs</topic><topic>Electromechanical coupling</topic><topic>Excitation-contraction coupling</topic><topic>Experimental data</topic><topic>Feedback</topic><topic>Guinea Pigs</topic><topic>Heart</topic><topic>Heart - physiology</topic><topic>Heart diseases</topic><topic>Heterogeneity</topic><topic>Homogeneity</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Ion channels</topic><topic>Magnetic resonance imaging</topic><topic>Mechanical loading</topic><topic>Mechanical properties</topic><topic>Membrane currents</topic><topic>Membrane potential</topic><topic>Models, Cardiovascular</topic><topic>Muscle contraction</topic><topic>Myocardium</topic><topic>Myocardium - cytology</topic><topic>Myocytes, Cardiac - physiology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>One dimensional models</topic><topic>Other</topic><topic>Propagation</topic><topic>Pulmonary arteries</topic><topic>Regional development</topic><topic>Resonance</topic><topic>Strain</topic><topic>Velocity</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khokhlova, Anastasia</creatorcontrib><creatorcontrib>Balakina-Vikulova, Nathalie</creatorcontrib><creatorcontrib>Katsnelson, Leonid</creatorcontrib><creatorcontrib>Solovyova, Olga</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>ProQuest Biological Science Journals</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khokhlova, Anastasia</au><au>Balakina-Vikulova, Nathalie</au><au>Katsnelson, Leonid</au><au>Solovyova, Olga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Cellular Electromechanical Coupling on Functional Heterogeneity in a One-Dimensional Tissue Model of the Myocardium</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>84</volume><spage>147</spage><epage>155</epage><pages>147-155</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>Abstract Based on the experimental evidence, we developed a one-dimensional (1D) model of heterogeneous myocardial tissue consisting of in-series connected cardiomyocytes from distant transmural regions using mathematical models of subendocardial and subepicardial cells. The regional deformation patterns produced by our 1D model are consistent with the transmural regional strain patterns obtained experimentally in the normal heart in vivo. The modelling results suggest that the mechanical load may essentially affect the transmural gradients in the electrical and mechanical properties of interacting myocytes within a tissue, thereby regulating global myocardial output.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>28364644</pmid><doi>10.1016/j.compbiomed.2017.03.021</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2017-05, Vol.84, p.147-155
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_1883844036
source ScienceDirect Freedom Collection 2022-2024
subjects Action potential
Anatomy
Animal models
Animals
Aorta
Biomechanical Phenomena - physiology
Calcium
Calcium-binding protein
Cardiac arrhythmia
Cardiac heterogeneity
Cardiac mechanics
Cardiac muscle
Cardiomyocytes
Cell culture
Circuits
Computer applications
Deformation
Deformation effects
Depolarization
Dogs
Electromechanical coupling
Excitation-contraction coupling
Experimental data
Feedback
Guinea Pigs
Heart
Heart - physiology
Heart diseases
Heterogeneity
Homogeneity
Humans
Internal Medicine
Ion channels
Magnetic resonance imaging
Mechanical loading
Mechanical properties
Membrane currents
Membrane potential
Models, Cardiovascular
Muscle contraction
Myocardium
Myocardium - cytology
Myocytes, Cardiac - physiology
NMR
Nuclear magnetic resonance
One dimensional models
Other
Propagation
Pulmonary arteries
Regional development
Resonance
Strain
Velocity
Ventricle
title Effects of Cellular Electromechanical Coupling on Functional Heterogeneity in a One-Dimensional Tissue Model of the Myocardium
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Cellular%20Electromechanical%20Coupling%20on%20Functional%20Heterogeneity%20in%20a%20One-Dimensional%20Tissue%20Model%20of%20the%20Myocardium&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Khokhlova,%20Anastasia&rft.date=2017-05-01&rft.volume=84&rft.spage=147&rft.epage=155&rft.pages=147-155&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2017.03.021&rft_dat=%3Cproquest_cross%3E1892784356%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c494t-738819c99755b3a847860f740f125046d7dc30beecd6e0ad6343ac89d9b4404f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1892784356&rft_id=info:pmid/28364644&rfr_iscdi=true