Loading…
Effects of Cellular Electromechanical Coupling on Functional Heterogeneity in a One-Dimensional Tissue Model of the Myocardium
Abstract Based on the experimental evidence, we developed a one-dimensional (1D) model of heterogeneous myocardial tissue consisting of in-series connected cardiomyocytes from distant transmural regions using mathematical models of subendocardial and subepicardial cells. The regional deformation pat...
Saved in:
Published in: | Computers in biology and medicine 2017-05, Vol.84, p.147-155 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c494t-738819c99755b3a847860f740f125046d7dc30beecd6e0ad6343ac89d9b4404f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c494t-738819c99755b3a847860f740f125046d7dc30beecd6e0ad6343ac89d9b4404f3 |
container_end_page | 155 |
container_issue | |
container_start_page | 147 |
container_title | Computers in biology and medicine |
container_volume | 84 |
creator | Khokhlova, Anastasia Balakina-Vikulova, Nathalie Katsnelson, Leonid Solovyova, Olga |
description | Abstract Based on the experimental evidence, we developed a one-dimensional (1D) model of heterogeneous myocardial tissue consisting of in-series connected cardiomyocytes from distant transmural regions using mathematical models of subendocardial and subepicardial cells. The regional deformation patterns produced by our 1D model are consistent with the transmural regional strain patterns obtained experimentally in the normal heart in vivo. The modelling results suggest that the mechanical load may essentially affect the transmural gradients in the electrical and mechanical properties of interacting myocytes within a tissue, thereby regulating global myocardial output. |
doi_str_mv | 10.1016/j.compbiomed.2017.03.021 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1883844036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482517300768</els_id><sourcerecordid>1892784356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-738819c99755b3a847860f740f125046d7dc30beecd6e0ad6343ac89d9b4404f3</originalsourceid><addsrcrecordid>eNqNksFu1DAQQCMEokvhF5AlLlwSxrETOxckWLYUqagHytly7EnrJbEXO0HaC9-Oo21VqSdOlsdvZjR-UxSEQkWBth_2lQnToXdhQlvVQEUFrIKaPis2VIquhIbx58UGgELJZd2cFa9S2gMABwYvi7Naspa3nG-Kv7thQDMnEgayxXFcRh3JbsyhmIubO-2d0SPZhuUwOn9LgicXizezCz6HL3HGGG7Ro5uPxHmiybXH8oub0KcTcuNSWpB8DxbHtcl8ly_HYHS0bpleFy8GPSZ8c3-eFz8vdjfby_Lq-uu37aer0vCOz6VgUtLOdJ1omp5pyYVsYRAcBlo3wFsrrGHQIxrbImjbMs60kZ3tes6BD-y8eH-qe4jh94JpVpNLJs-rPYYlKSolkxllbUbfPUH3YYl5lJXqaiE5a1ZKnigTQ0oRB3WIbtLxqCio1ZHaq0dHanWkgKnsKKe-vW-w9OvbQ-KDlAx8PgGYf-SPw6iScegNWhezGGWD-58uH58UMVngKvMXHjE9zqRSrUD9WHdlXRUqGIBoJfsHuk-8zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1892784356</pqid></control><display><type>article</type><title>Effects of Cellular Electromechanical Coupling on Functional Heterogeneity in a One-Dimensional Tissue Model of the Myocardium</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Khokhlova, Anastasia ; Balakina-Vikulova, Nathalie ; Katsnelson, Leonid ; Solovyova, Olga</creator><creatorcontrib>Khokhlova, Anastasia ; Balakina-Vikulova, Nathalie ; Katsnelson, Leonid ; Solovyova, Olga</creatorcontrib><description>Abstract Based on the experimental evidence, we developed a one-dimensional (1D) model of heterogeneous myocardial tissue consisting of in-series connected cardiomyocytes from distant transmural regions using mathematical models of subendocardial and subepicardial cells. The regional deformation patterns produced by our 1D model are consistent with the transmural regional strain patterns obtained experimentally in the normal heart in vivo. The modelling results suggest that the mechanical load may essentially affect the transmural gradients in the electrical and mechanical properties of interacting myocytes within a tissue, thereby regulating global myocardial output.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2017.03.021</identifier><identifier>PMID: 28364644</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Action potential ; Anatomy ; Animal models ; Animals ; Aorta ; Biomechanical Phenomena - physiology ; Calcium ; Calcium-binding protein ; Cardiac arrhythmia ; Cardiac heterogeneity ; Cardiac mechanics ; Cardiac muscle ; Cardiomyocytes ; Cell culture ; Circuits ; Computer applications ; Deformation ; Deformation effects ; Depolarization ; Dogs ; Electromechanical coupling ; Excitation-contraction coupling ; Experimental data ; Feedback ; Guinea Pigs ; Heart ; Heart - physiology ; Heart diseases ; Heterogeneity ; Homogeneity ; Humans ; Internal Medicine ; Ion channels ; Magnetic resonance imaging ; Mechanical loading ; Mechanical properties ; Membrane currents ; Membrane potential ; Models, Cardiovascular ; Muscle contraction ; Myocardium ; Myocardium - cytology ; Myocytes, Cardiac - physiology ; NMR ; Nuclear magnetic resonance ; One dimensional models ; Other ; Propagation ; Pulmonary arteries ; Regional development ; Resonance ; Strain ; Velocity ; Ventricle</subject><ispartof>Computers in biology and medicine, 2017-05, Vol.84, p.147-155</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited May 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-738819c99755b3a847860f740f125046d7dc30beecd6e0ad6343ac89d9b4404f3</citedby><cites>FETCH-LOGICAL-c494t-738819c99755b3a847860f740f125046d7dc30beecd6e0ad6343ac89d9b4404f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28364644$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khokhlova, Anastasia</creatorcontrib><creatorcontrib>Balakina-Vikulova, Nathalie</creatorcontrib><creatorcontrib>Katsnelson, Leonid</creatorcontrib><creatorcontrib>Solovyova, Olga</creatorcontrib><title>Effects of Cellular Electromechanical Coupling on Functional Heterogeneity in a One-Dimensional Tissue Model of the Myocardium</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abstract Based on the experimental evidence, we developed a one-dimensional (1D) model of heterogeneous myocardial tissue consisting of in-series connected cardiomyocytes from distant transmural regions using mathematical models of subendocardial and subepicardial cells. The regional deformation patterns produced by our 1D model are consistent with the transmural regional strain patterns obtained experimentally in the normal heart in vivo. The modelling results suggest that the mechanical load may essentially affect the transmural gradients in the electrical and mechanical properties of interacting myocytes within a tissue, thereby regulating global myocardial output.</description><subject>Action potential</subject><subject>Anatomy</subject><subject>Animal models</subject><subject>Animals</subject><subject>Aorta</subject><subject>Biomechanical Phenomena - physiology</subject><subject>Calcium</subject><subject>Calcium-binding protein</subject><subject>Cardiac arrhythmia</subject><subject>Cardiac heterogeneity</subject><subject>Cardiac mechanics</subject><subject>Cardiac muscle</subject><subject>Cardiomyocytes</subject><subject>Cell culture</subject><subject>Circuits</subject><subject>Computer applications</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Depolarization</subject><subject>Dogs</subject><subject>Electromechanical coupling</subject><subject>Excitation-contraction coupling</subject><subject>Experimental data</subject><subject>Feedback</subject><subject>Guinea Pigs</subject><subject>Heart</subject><subject>Heart - physiology</subject><subject>Heart diseases</subject><subject>Heterogeneity</subject><subject>Homogeneity</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Ion channels</subject><subject>Magnetic resonance imaging</subject><subject>Mechanical loading</subject><subject>Mechanical properties</subject><subject>Membrane currents</subject><subject>Membrane potential</subject><subject>Models, Cardiovascular</subject><subject>Muscle contraction</subject><subject>Myocardium</subject><subject>Myocardium - cytology</subject><subject>Myocytes, Cardiac - physiology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>One dimensional models</subject><subject>Other</subject><subject>Propagation</subject><subject>Pulmonary arteries</subject><subject>Regional development</subject><subject>Resonance</subject><subject>Strain</subject><subject>Velocity</subject><subject>Ventricle</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNksFu1DAQQCMEokvhF5AlLlwSxrETOxckWLYUqagHytly7EnrJbEXO0HaC9-Oo21VqSdOlsdvZjR-UxSEQkWBth_2lQnToXdhQlvVQEUFrIKaPis2VIquhIbx58UGgELJZd2cFa9S2gMABwYvi7Naspa3nG-Kv7thQDMnEgayxXFcRh3JbsyhmIubO-2d0SPZhuUwOn9LgicXizezCz6HL3HGGG7Ro5uPxHmiybXH8oub0KcTcuNSWpB8DxbHtcl8ly_HYHS0bpleFy8GPSZ8c3-eFz8vdjfby_Lq-uu37aer0vCOz6VgUtLOdJ1omp5pyYVsYRAcBlo3wFsrrGHQIxrbImjbMs60kZ3tes6BD-y8eH-qe4jh94JpVpNLJs-rPYYlKSolkxllbUbfPUH3YYl5lJXqaiE5a1ZKnigTQ0oRB3WIbtLxqCio1ZHaq0dHanWkgKnsKKe-vW-w9OvbQ-KDlAx8PgGYf-SPw6iScegNWhezGGWD-58uH58UMVngKvMXHjE9zqRSrUD9WHdlXRUqGIBoJfsHuk-8zA</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Khokhlova, Anastasia</creator><creator>Balakina-Vikulova, Nathalie</creator><creator>Katsnelson, Leonid</creator><creator>Solovyova, Olga</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20170501</creationdate><title>Effects of Cellular Electromechanical Coupling on Functional Heterogeneity in a One-Dimensional Tissue Model of the Myocardium</title><author>Khokhlova, Anastasia ; Balakina-Vikulova, Nathalie ; Katsnelson, Leonid ; Solovyova, Olga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-738819c99755b3a847860f740f125046d7dc30beecd6e0ad6343ac89d9b4404f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Action potential</topic><topic>Anatomy</topic><topic>Animal models</topic><topic>Animals</topic><topic>Aorta</topic><topic>Biomechanical Phenomena - physiology</topic><topic>Calcium</topic><topic>Calcium-binding protein</topic><topic>Cardiac arrhythmia</topic><topic>Cardiac heterogeneity</topic><topic>Cardiac mechanics</topic><topic>Cardiac muscle</topic><topic>Cardiomyocytes</topic><topic>Cell culture</topic><topic>Circuits</topic><topic>Computer applications</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Depolarization</topic><topic>Dogs</topic><topic>Electromechanical coupling</topic><topic>Excitation-contraction coupling</topic><topic>Experimental data</topic><topic>Feedback</topic><topic>Guinea Pigs</topic><topic>Heart</topic><topic>Heart - physiology</topic><topic>Heart diseases</topic><topic>Heterogeneity</topic><topic>Homogeneity</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Ion channels</topic><topic>Magnetic resonance imaging</topic><topic>Mechanical loading</topic><topic>Mechanical properties</topic><topic>Membrane currents</topic><topic>Membrane potential</topic><topic>Models, Cardiovascular</topic><topic>Muscle contraction</topic><topic>Myocardium</topic><topic>Myocardium - cytology</topic><topic>Myocytes, Cardiac - physiology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>One dimensional models</topic><topic>Other</topic><topic>Propagation</topic><topic>Pulmonary arteries</topic><topic>Regional development</topic><topic>Resonance</topic><topic>Strain</topic><topic>Velocity</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khokhlova, Anastasia</creatorcontrib><creatorcontrib>Balakina-Vikulova, Nathalie</creatorcontrib><creatorcontrib>Katsnelson, Leonid</creatorcontrib><creatorcontrib>Solovyova, Olga</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>ProQuest Biological Science Journals</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khokhlova, Anastasia</au><au>Balakina-Vikulova, Nathalie</au><au>Katsnelson, Leonid</au><au>Solovyova, Olga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Cellular Electromechanical Coupling on Functional Heterogeneity in a One-Dimensional Tissue Model of the Myocardium</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>84</volume><spage>147</spage><epage>155</epage><pages>147-155</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>Abstract Based on the experimental evidence, we developed a one-dimensional (1D) model of heterogeneous myocardial tissue consisting of in-series connected cardiomyocytes from distant transmural regions using mathematical models of subendocardial and subepicardial cells. The regional deformation patterns produced by our 1D model are consistent with the transmural regional strain patterns obtained experimentally in the normal heart in vivo. The modelling results suggest that the mechanical load may essentially affect the transmural gradients in the electrical and mechanical properties of interacting myocytes within a tissue, thereby regulating global myocardial output.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>28364644</pmid><doi>10.1016/j.compbiomed.2017.03.021</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2017-05, Vol.84, p.147-155 |
issn | 0010-4825 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_1883844036 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Action potential Anatomy Animal models Animals Aorta Biomechanical Phenomena - physiology Calcium Calcium-binding protein Cardiac arrhythmia Cardiac heterogeneity Cardiac mechanics Cardiac muscle Cardiomyocytes Cell culture Circuits Computer applications Deformation Deformation effects Depolarization Dogs Electromechanical coupling Excitation-contraction coupling Experimental data Feedback Guinea Pigs Heart Heart - physiology Heart diseases Heterogeneity Homogeneity Humans Internal Medicine Ion channels Magnetic resonance imaging Mechanical loading Mechanical properties Membrane currents Membrane potential Models, Cardiovascular Muscle contraction Myocardium Myocardium - cytology Myocytes, Cardiac - physiology NMR Nuclear magnetic resonance One dimensional models Other Propagation Pulmonary arteries Regional development Resonance Strain Velocity Ventricle |
title | Effects of Cellular Electromechanical Coupling on Functional Heterogeneity in a One-Dimensional Tissue Model of the Myocardium |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Cellular%20Electromechanical%20Coupling%20on%20Functional%20Heterogeneity%20in%20a%20One-Dimensional%20Tissue%20Model%20of%20the%20Myocardium&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Khokhlova,%20Anastasia&rft.date=2017-05-01&rft.volume=84&rft.spage=147&rft.epage=155&rft.pages=147-155&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2017.03.021&rft_dat=%3Cproquest_cross%3E1892784356%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c494t-738819c99755b3a847860f740f125046d7dc30beecd6e0ad6343ac89d9b4404f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1892784356&rft_id=info:pmid/28364644&rfr_iscdi=true |