Loading…
Coherent groups of units of integral group rings and direct products of free groups
We classify the finite groups G for which $\mathcal{U}({\mathbb Z} G)$ , the group of units of the integral group ring of G, does not contain a direct product of two non-abelian free groups. This list of groups contains all the groups for which $\mathcal{U}({\mathbb Z} G)$ is coherent. This reduces...
Saved in:
Published in: | Mathematical proceedings of the Cambridge Philosophical Society 2017-03, Vol.162 (2), p.191-209 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c302t-539cb042fd1339d53985caa0c23727672f7b1c2c255bf399e85eec4ca8b4d1343 |
container_end_page | 209 |
container_issue | 2 |
container_start_page | 191 |
container_title | Mathematical proceedings of the Cambridge Philosophical Society |
container_volume | 162 |
creator | DEL RÍO, ÁNGEL ZALESSKII, PAVEL |
description | We classify the finite groups G for which
$\mathcal{U}({\mathbb Z} G)$
, the group of units of the integral group ring of G, does not contain a direct product of two non-abelian free groups. This list of groups contains all the groups for which
$\mathcal{U}({\mathbb Z} G)$
is coherent. This reduces the problem to classify the finite groups G for which
$\mathcal{U}({\mathbb Z} G)$
is coherent to decide about the coherency of a finite list of groups of the form SL
n
(R), with R an order in a finite dimensional rational division algebra. |
doi_str_mv | 10.1017/S0305004116000517 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884104511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0305004116000517</cupid><sourcerecordid>4311915411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-539cb042fd1339d53985caa0c23727672f7b1c2c255bf399e85eec4ca8b4d1343</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7-Ad4CXrxUZ5qkH0dZ_IIFD6vnkqaT2qXbrkl78L83a3sQxdPM8H7v8RjGLhFuEDC93YAABSAREwBQmB6xBcokjzJI5DFbHOTooJ-yM--3gRE5woJtVv07OeoGXrt-3HveWz52zfC9NN1AtdPtpHHXdLXnuqt41TgyA9-7vhrNxFpHNGecsxOrW08X81yyt4f719VTtH55fF7drSMjIB4iJXJTgoxthULkVTgzZbQGE4s0TpM0tmmJJjaxUqUVeU6ZIjLS6KyUwSLFkl1PuaHHx0h-KHaNN9S2uqN-9AVmmUSQCjGgV7_QbT-6LrQLVCJBJkkKgcKJMq733pEt9q7ZafdZIBSHNxd_3hw8YvboXemaqqYf0f-6vgAWSX2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864046670</pqid></control><display><type>article</type><title>Coherent groups of units of integral group rings and direct products of free groups</title><source>Cambridge Journals Online</source><creator>DEL RÍO, ÁNGEL ; ZALESSKII, PAVEL</creator><creatorcontrib>DEL RÍO, ÁNGEL ; ZALESSKII, PAVEL</creatorcontrib><description>We classify the finite groups G for which
$\mathcal{U}({\mathbb Z} G)$
, the group of units of the integral group ring of G, does not contain a direct product of two non-abelian free groups. This list of groups contains all the groups for which
$\mathcal{U}({\mathbb Z} G)$
is coherent. This reduces the problem to classify the finite groups G for which
$\mathcal{U}({\mathbb Z} G)$
is coherent to decide about the coherency of a finite list of groups of the form SL
n
(R), with R an order in a finite dimensional rational division algebra.</description><identifier>ISSN: 0305-0041</identifier><identifier>EISSN: 1469-8064</identifier><identifier>DOI: 10.1017/S0305004116000517</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra ; Classification ; Coherence ; Integrals ; Lists ; Mathematical analysis ; Rings (mathematics)</subject><ispartof>Mathematical proceedings of the Cambridge Philosophical Society, 2017-03, Vol.162 (2), p.191-209</ispartof><rights>Copyright © Cambridge Philosophical Society 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-539cb042fd1339d53985caa0c23727672f7b1c2c255bf399e85eec4ca8b4d1343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0305004116000517/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72832</link.rule.ids></links><search><creatorcontrib>DEL RÍO, ÁNGEL</creatorcontrib><creatorcontrib>ZALESSKII, PAVEL</creatorcontrib><title>Coherent groups of units of integral group rings and direct products of free groups</title><title>Mathematical proceedings of the Cambridge Philosophical Society</title><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><description>We classify the finite groups G for which
$\mathcal{U}({\mathbb Z} G)$
, the group of units of the integral group ring of G, does not contain a direct product of two non-abelian free groups. This list of groups contains all the groups for which
$\mathcal{U}({\mathbb Z} G)$
is coherent. This reduces the problem to classify the finite groups G for which
$\mathcal{U}({\mathbb Z} G)$
is coherent to decide about the coherency of a finite list of groups of the form SL
n
(R), with R an order in a finite dimensional rational division algebra.</description><subject>Algebra</subject><subject>Classification</subject><subject>Coherence</subject><subject>Integrals</subject><subject>Lists</subject><subject>Mathematical analysis</subject><subject>Rings (mathematics)</subject><issn>0305-0041</issn><issn>1469-8064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7-Ad4CXrxUZ5qkH0dZ_IIFD6vnkqaT2qXbrkl78L83a3sQxdPM8H7v8RjGLhFuEDC93YAABSAREwBQmB6xBcokjzJI5DFbHOTooJ-yM--3gRE5woJtVv07OeoGXrt-3HveWz52zfC9NN1AtdPtpHHXdLXnuqt41TgyA9-7vhrNxFpHNGecsxOrW08X81yyt4f719VTtH55fF7drSMjIB4iJXJTgoxthULkVTgzZbQGE4s0TpM0tmmJJjaxUqUVeU6ZIjLS6KyUwSLFkl1PuaHHx0h-KHaNN9S2uqN-9AVmmUSQCjGgV7_QbT-6LrQLVCJBJkkKgcKJMq733pEt9q7ZafdZIBSHNxd_3hw8YvboXemaqqYf0f-6vgAWSX2g</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>DEL RÍO, ÁNGEL</creator><creator>ZALESSKII, PAVEL</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201703</creationdate><title>Coherent groups of units of integral group rings and direct products of free groups</title><author>DEL RÍO, ÁNGEL ; ZALESSKII, PAVEL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-539cb042fd1339d53985caa0c23727672f7b1c2c255bf399e85eec4ca8b4d1343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Classification</topic><topic>Coherence</topic><topic>Integrals</topic><topic>Lists</topic><topic>Mathematical analysis</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DEL RÍO, ÁNGEL</creatorcontrib><creatorcontrib>ZALESSKII, PAVEL</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DEL RÍO, ÁNGEL</au><au>ZALESSKII, PAVEL</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent groups of units of integral group rings and direct products of free groups</atitle><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><date>2017-03</date><risdate>2017</risdate><volume>162</volume><issue>2</issue><spage>191</spage><epage>209</epage><pages>191-209</pages><issn>0305-0041</issn><eissn>1469-8064</eissn><abstract>We classify the finite groups G for which
$\mathcal{U}({\mathbb Z} G)$
, the group of units of the integral group ring of G, does not contain a direct product of two non-abelian free groups. This list of groups contains all the groups for which
$\mathcal{U}({\mathbb Z} G)$
is coherent. This reduces the problem to classify the finite groups G for which
$\mathcal{U}({\mathbb Z} G)$
is coherent to decide about the coherency of a finite list of groups of the form SL
n
(R), with R an order in a finite dimensional rational division algebra.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0305004116000517</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0041 |
ispartof | Mathematical proceedings of the Cambridge Philosophical Society, 2017-03, Vol.162 (2), p.191-209 |
issn | 0305-0041 1469-8064 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884104511 |
source | Cambridge Journals Online |
subjects | Algebra Classification Coherence Integrals Lists Mathematical analysis Rings (mathematics) |
title | Coherent groups of units of integral group rings and direct products of free groups |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A37%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20groups%20of%20units%20of%20integral%20group%20rings%20and%20direct%20products%20of%20free%20groups&rft.jtitle=Mathematical%20proceedings%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=DEL%20R%C3%8DO,%20%C3%81NGEL&rft.date=2017-03&rft.volume=162&rft.issue=2&rft.spage=191&rft.epage=209&rft.pages=191-209&rft.issn=0305-0041&rft.eissn=1469-8064&rft_id=info:doi/10.1017/S0305004116000517&rft_dat=%3Cproquest_cross%3E4311915411%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c302t-539cb042fd1339d53985caa0c23727672f7b1c2c255bf399e85eec4ca8b4d1343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1864046670&rft_id=info:pmid/&rft_cupid=10_1017_S0305004116000517&rfr_iscdi=true |