Loading…

Coherent groups of units of integral group rings and direct products of free groups

We classify the finite groups G for which $\mathcal{U}({\mathbb Z} G)$ , the group of units of the integral group ring of G, does not contain a direct product of two non-abelian free groups. This list of groups contains all the groups for which $\mathcal{U}({\mathbb Z} G)$ is coherent. This reduces...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical proceedings of the Cambridge Philosophical Society 2017-03, Vol.162 (2), p.191-209
Main Authors: DEL RÍO, ÁNGEL, ZALESSKII, PAVEL
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c302t-539cb042fd1339d53985caa0c23727672f7b1c2c255bf399e85eec4ca8b4d1343
container_end_page 209
container_issue 2
container_start_page 191
container_title Mathematical proceedings of the Cambridge Philosophical Society
container_volume 162
creator DEL RÍO, ÁNGEL
ZALESSKII, PAVEL
description We classify the finite groups G for which $\mathcal{U}({\mathbb Z} G)$ , the group of units of the integral group ring of G, does not contain a direct product of two non-abelian free groups. This list of groups contains all the groups for which $\mathcal{U}({\mathbb Z} G)$ is coherent. This reduces the problem to classify the finite groups G for which $\mathcal{U}({\mathbb Z} G)$ is coherent to decide about the coherency of a finite list of groups of the form SL n (R), with R an order in a finite dimensional rational division algebra.
doi_str_mv 10.1017/S0305004116000517
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884104511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0305004116000517</cupid><sourcerecordid>4311915411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-539cb042fd1339d53985caa0c23727672f7b1c2c255bf399e85eec4ca8b4d1343</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7-Ad4CXrxUZ5qkH0dZ_IIFD6vnkqaT2qXbrkl78L83a3sQxdPM8H7v8RjGLhFuEDC93YAABSAREwBQmB6xBcokjzJI5DFbHOTooJ-yM--3gRE5woJtVv07OeoGXrt-3HveWz52zfC9NN1AtdPtpHHXdLXnuqt41TgyA9-7vhrNxFpHNGecsxOrW08X81yyt4f719VTtH55fF7drSMjIB4iJXJTgoxthULkVTgzZbQGE4s0TpM0tmmJJjaxUqUVeU6ZIjLS6KyUwSLFkl1PuaHHx0h-KHaNN9S2uqN-9AVmmUSQCjGgV7_QbT-6LrQLVCJBJkkKgcKJMq733pEt9q7ZafdZIBSHNxd_3hw8YvboXemaqqYf0f-6vgAWSX2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864046670</pqid></control><display><type>article</type><title>Coherent groups of units of integral group rings and direct products of free groups</title><source>Cambridge Journals Online</source><creator>DEL RÍO, ÁNGEL ; ZALESSKII, PAVEL</creator><creatorcontrib>DEL RÍO, ÁNGEL ; ZALESSKII, PAVEL</creatorcontrib><description>We classify the finite groups G for which $\mathcal{U}({\mathbb Z} G)$ , the group of units of the integral group ring of G, does not contain a direct product of two non-abelian free groups. This list of groups contains all the groups for which $\mathcal{U}({\mathbb Z} G)$ is coherent. This reduces the problem to classify the finite groups G for which $\mathcal{U}({\mathbb Z} G)$ is coherent to decide about the coherency of a finite list of groups of the form SL n (R), with R an order in a finite dimensional rational division algebra.</description><identifier>ISSN: 0305-0041</identifier><identifier>EISSN: 1469-8064</identifier><identifier>DOI: 10.1017/S0305004116000517</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra ; Classification ; Coherence ; Integrals ; Lists ; Mathematical analysis ; Rings (mathematics)</subject><ispartof>Mathematical proceedings of the Cambridge Philosophical Society, 2017-03, Vol.162 (2), p.191-209</ispartof><rights>Copyright © Cambridge Philosophical Society 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-539cb042fd1339d53985caa0c23727672f7b1c2c255bf399e85eec4ca8b4d1343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0305004116000517/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72832</link.rule.ids></links><search><creatorcontrib>DEL RÍO, ÁNGEL</creatorcontrib><creatorcontrib>ZALESSKII, PAVEL</creatorcontrib><title>Coherent groups of units of integral group rings and direct products of free groups</title><title>Mathematical proceedings of the Cambridge Philosophical Society</title><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><description>We classify the finite groups G for which $\mathcal{U}({\mathbb Z} G)$ , the group of units of the integral group ring of G, does not contain a direct product of two non-abelian free groups. This list of groups contains all the groups for which $\mathcal{U}({\mathbb Z} G)$ is coherent. This reduces the problem to classify the finite groups G for which $\mathcal{U}({\mathbb Z} G)$ is coherent to decide about the coherency of a finite list of groups of the form SL n (R), with R an order in a finite dimensional rational division algebra.</description><subject>Algebra</subject><subject>Classification</subject><subject>Coherence</subject><subject>Integrals</subject><subject>Lists</subject><subject>Mathematical analysis</subject><subject>Rings (mathematics)</subject><issn>0305-0041</issn><issn>1469-8064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7-Ad4CXrxUZ5qkH0dZ_IIFD6vnkqaT2qXbrkl78L83a3sQxdPM8H7v8RjGLhFuEDC93YAABSAREwBQmB6xBcokjzJI5DFbHOTooJ-yM--3gRE5woJtVv07OeoGXrt-3HveWz52zfC9NN1AtdPtpHHXdLXnuqt41TgyA9-7vhrNxFpHNGecsxOrW08X81yyt4f719VTtH55fF7drSMjIB4iJXJTgoxthULkVTgzZbQGE4s0TpM0tmmJJjaxUqUVeU6ZIjLS6KyUwSLFkl1PuaHHx0h-KHaNN9S2uqN-9AVmmUSQCjGgV7_QbT-6LrQLVCJBJkkKgcKJMq733pEt9q7ZafdZIBSHNxd_3hw8YvboXemaqqYf0f-6vgAWSX2g</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>DEL RÍO, ÁNGEL</creator><creator>ZALESSKII, PAVEL</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201703</creationdate><title>Coherent groups of units of integral group rings and direct products of free groups</title><author>DEL RÍO, ÁNGEL ; ZALESSKII, PAVEL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-539cb042fd1339d53985caa0c23727672f7b1c2c255bf399e85eec4ca8b4d1343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Classification</topic><topic>Coherence</topic><topic>Integrals</topic><topic>Lists</topic><topic>Mathematical analysis</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DEL RÍO, ÁNGEL</creatorcontrib><creatorcontrib>ZALESSKII, PAVEL</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DEL RÍO, ÁNGEL</au><au>ZALESSKII, PAVEL</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent groups of units of integral group rings and direct products of free groups</atitle><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><date>2017-03</date><risdate>2017</risdate><volume>162</volume><issue>2</issue><spage>191</spage><epage>209</epage><pages>191-209</pages><issn>0305-0041</issn><eissn>1469-8064</eissn><abstract>We classify the finite groups G for which $\mathcal{U}({\mathbb Z} G)$ , the group of units of the integral group ring of G, does not contain a direct product of two non-abelian free groups. This list of groups contains all the groups for which $\mathcal{U}({\mathbb Z} G)$ is coherent. This reduces the problem to classify the finite groups G for which $\mathcal{U}({\mathbb Z} G)$ is coherent to decide about the coherency of a finite list of groups of the form SL n (R), with R an order in a finite dimensional rational division algebra.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0305004116000517</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-0041
ispartof Mathematical proceedings of the Cambridge Philosophical Society, 2017-03, Vol.162 (2), p.191-209
issn 0305-0041
1469-8064
language eng
recordid cdi_proquest_miscellaneous_1884104511
source Cambridge Journals Online
subjects Algebra
Classification
Coherence
Integrals
Lists
Mathematical analysis
Rings (mathematics)
title Coherent groups of units of integral group rings and direct products of free groups
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A37%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20groups%20of%20units%20of%20integral%20group%20rings%20and%20direct%20products%20of%20free%20groups&rft.jtitle=Mathematical%20proceedings%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=DEL%20R%C3%8DO,%20%C3%81NGEL&rft.date=2017-03&rft.volume=162&rft.issue=2&rft.spage=191&rft.epage=209&rft.pages=191-209&rft.issn=0305-0041&rft.eissn=1469-8064&rft_id=info:doi/10.1017/S0305004116000517&rft_dat=%3Cproquest_cross%3E4311915411%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c302t-539cb042fd1339d53985caa0c23727672f7b1c2c255bf399e85eec4ca8b4d1343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1864046670&rft_id=info:pmid/&rft_cupid=10_1017_S0305004116000517&rfr_iscdi=true