Loading…

Optimal Hamiltonian Simulation by Quantum Signal Processing

The physics of quantum mechanics is the inspiration for, and underlies, quantum computation. As such, one expects physical intuition to be highly influential in the understanding and design of many quantum algorithms, particularly simulation of physical systems. Surprisingly, this has been challengi...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2017-01, Vol.118 (1), p.010501-010501
Main Authors: Low, Guang Hao, Chuang, Isaac L
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 010501
container_issue 1
container_start_page 010501
container_title Physical review letters
container_volume 118
creator Low, Guang Hao
Chuang, Isaac L
description The physics of quantum mechanics is the inspiration for, and underlies, quantum computation. As such, one expects physical intuition to be highly influential in the understanding and design of many quantum algorithms, particularly simulation of physical systems. Surprisingly, this has been challenging, with current Hamiltonian simulation algorithms remaining abstract and often the result of sophisticated but unintuitive constructions. We contend that physical intuition can lead to optimal simulation methods by showing that a focus on simple single-qubit rotations elegantly furnishes an optimal algorithm for Hamiltonian simulation, a universal problem that encapsulates all the power of quantum computation. Specifically, we show that the query complexity of implementing time evolution by a d-sparse Hamiltonian H[over ^] for time-interval t with error ε is O[td∥H[over ^]∥_{max}+log(1/ε)/loglog(1/ε)], which matches lower bounds in all parameters. This connection is made through general three-step "quantum signal processing" methodology, comprised of (i) transducing eigenvalues of H[over ^] into a single ancilla qubit, (ii) transforming these eigenvalues through an optimal-length sequence of single-qubit rotations, and (iii) projecting this ancilla with near unity success probability.
doi_str_mv 10.1103/PhysRevLett.118.010501
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884110060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884110060</sourcerecordid><originalsourceid>FETCH-LOGICAL-p174t-914e52cbb68c563d2000706787f798bb0bd4c85b6ea40ff36247e48c881bfb883</originalsourceid><addsrcrecordid>eNqNkEtLw0AUhQdRbK3-hZKlm9R7M5OZG1xJUSsUWl_rMJNOaiQvMxOh_94B697VgcPH4fAxNkdYIAK_2X4c3Iv9XlvvQ0ELQEgBT9gUQWWxQhSnbArAMc4A1IRdOPcJAJhIOmeThBCkQD5lt5veV42uo5Vuqtp3baXb6LVqxlr7qmsjc4ieR936sQntvg3gdugK61zV7i_ZWalrZ6-OOWPvD_dvy1W83jw-Le_WcY9K-DhDYdOkMEZSkUq-S8IPBVKRKlVGxoDZiYJSI60WUJZcJkJZQQURmtIQ8Rm7_t3th-5rtM7nTeUKW9e6td3ociQSQQpI-AcqMaWESAV0fkRH09hd3g_Bw3DI_9zwH21vZ54</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861582887</pqid></control><display><type>article</type><title>Optimal Hamiltonian Simulation by Quantum Signal Processing</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Low, Guang Hao ; Chuang, Isaac L</creator><creatorcontrib>Low, Guang Hao ; Chuang, Isaac L</creatorcontrib><description>The physics of quantum mechanics is the inspiration for, and underlies, quantum computation. As such, one expects physical intuition to be highly influential in the understanding and design of many quantum algorithms, particularly simulation of physical systems. Surprisingly, this has been challenging, with current Hamiltonian simulation algorithms remaining abstract and often the result of sophisticated but unintuitive constructions. We contend that physical intuition can lead to optimal simulation methods by showing that a focus on simple single-qubit rotations elegantly furnishes an optimal algorithm for Hamiltonian simulation, a universal problem that encapsulates all the power of quantum computation. Specifically, we show that the query complexity of implementing time evolution by a d-sparse Hamiltonian H[over ^] for time-interval t with error ε is O[td∥H[over ^]∥_{max}+log(1/ε)/loglog(1/ε)], which matches lower bounds in all parameters. This connection is made through general three-step "quantum signal processing" methodology, comprised of (i) transducing eigenvalues of H[over ^] into a single ancilla qubit, (ii) transforming these eigenvalues through an optimal-length sequence of single-qubit rotations, and (iii) projecting this ancilla with near unity success probability.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.118.010501</identifier><identifier>PMID: 28106413</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Computation ; Computer simulation ; Eigenvalues ; Inspiration ; Optimization ; Qubits (quantum computing) ; Signal processing</subject><ispartof>Physical review letters, 2017-01, Vol.118 (1), p.010501-010501</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28106413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Low, Guang Hao</creatorcontrib><creatorcontrib>Chuang, Isaac L</creatorcontrib><title>Optimal Hamiltonian Simulation by Quantum Signal Processing</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The physics of quantum mechanics is the inspiration for, and underlies, quantum computation. As such, one expects physical intuition to be highly influential in the understanding and design of many quantum algorithms, particularly simulation of physical systems. Surprisingly, this has been challenging, with current Hamiltonian simulation algorithms remaining abstract and often the result of sophisticated but unintuitive constructions. We contend that physical intuition can lead to optimal simulation methods by showing that a focus on simple single-qubit rotations elegantly furnishes an optimal algorithm for Hamiltonian simulation, a universal problem that encapsulates all the power of quantum computation. Specifically, we show that the query complexity of implementing time evolution by a d-sparse Hamiltonian H[over ^] for time-interval t with error ε is O[td∥H[over ^]∥_{max}+log(1/ε)/loglog(1/ε)], which matches lower bounds in all parameters. This connection is made through general three-step "quantum signal processing" methodology, comprised of (i) transducing eigenvalues of H[over ^] into a single ancilla qubit, (ii) transforming these eigenvalues through an optimal-length sequence of single-qubit rotations, and (iii) projecting this ancilla with near unity success probability.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Eigenvalues</subject><subject>Inspiration</subject><subject>Optimization</subject><subject>Qubits (quantum computing)</subject><subject>Signal processing</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLw0AUhQdRbK3-hZKlm9R7M5OZG1xJUSsUWl_rMJNOaiQvMxOh_94B697VgcPH4fAxNkdYIAK_2X4c3Iv9XlvvQ0ELQEgBT9gUQWWxQhSnbArAMc4A1IRdOPcJAJhIOmeThBCkQD5lt5veV42uo5Vuqtp3baXb6LVqxlr7qmsjc4ieR936sQntvg3gdugK61zV7i_ZWalrZ6-OOWPvD_dvy1W83jw-Le_WcY9K-DhDYdOkMEZSkUq-S8IPBVKRKlVGxoDZiYJSI60WUJZcJkJZQQURmtIQ8Rm7_t3th-5rtM7nTeUKW9e6td3ociQSQQpI-AcqMaWESAV0fkRH09hd3g_Bw3DI_9zwH21vZ54</recordid><startdate>20170106</startdate><enddate>20170106</enddate><creator>Low, Guang Hao</creator><creator>Chuang, Isaac L</creator><scope>NPM</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170106</creationdate><title>Optimal Hamiltonian Simulation by Quantum Signal Processing</title><author>Low, Guang Hao ; Chuang, Isaac L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p174t-914e52cbb68c563d2000706787f798bb0bd4c85b6ea40ff36247e48c881bfb883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Eigenvalues</topic><topic>Inspiration</topic><topic>Optimization</topic><topic>Qubits (quantum computing)</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Low, Guang Hao</creatorcontrib><creatorcontrib>Chuang, Isaac L</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Low, Guang Hao</au><au>Chuang, Isaac L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Hamiltonian Simulation by Quantum Signal Processing</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2017-01-06</date><risdate>2017</risdate><volume>118</volume><issue>1</issue><spage>010501</spage><epage>010501</epage><pages>010501-010501</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The physics of quantum mechanics is the inspiration for, and underlies, quantum computation. As such, one expects physical intuition to be highly influential in the understanding and design of many quantum algorithms, particularly simulation of physical systems. Surprisingly, this has been challenging, with current Hamiltonian simulation algorithms remaining abstract and often the result of sophisticated but unintuitive constructions. We contend that physical intuition can lead to optimal simulation methods by showing that a focus on simple single-qubit rotations elegantly furnishes an optimal algorithm for Hamiltonian simulation, a universal problem that encapsulates all the power of quantum computation. Specifically, we show that the query complexity of implementing time evolution by a d-sparse Hamiltonian H[over ^] for time-interval t with error ε is O[td∥H[over ^]∥_{max}+log(1/ε)/loglog(1/ε)], which matches lower bounds in all parameters. This connection is made through general three-step "quantum signal processing" methodology, comprised of (i) transducing eigenvalues of H[over ^] into a single ancilla qubit, (ii) transforming these eigenvalues through an optimal-length sequence of single-qubit rotations, and (iii) projecting this ancilla with near unity success probability.</abstract><cop>United States</cop><pmid>28106413</pmid><doi>10.1103/PhysRevLett.118.010501</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2017-01, Vol.118 (1), p.010501-010501
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1884110060
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Algorithms
Computation
Computer simulation
Eigenvalues
Inspiration
Optimization
Qubits (quantum computing)
Signal processing
title Optimal Hamiltonian Simulation by Quantum Signal Processing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Hamiltonian%20Simulation%20by%20Quantum%20Signal%20Processing&rft.jtitle=Physical%20review%20letters&rft.au=Low,%20Guang%20Hao&rft.date=2017-01-06&rft.volume=118&rft.issue=1&rft.spage=010501&rft.epage=010501&rft.pages=010501-010501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.118.010501&rft_dat=%3Cproquest_pubme%3E1884110060%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p174t-914e52cbb68c563d2000706787f798bb0bd4c85b6ea40ff36247e48c881bfb883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1861582887&rft_id=info:pmid/28106413&rfr_iscdi=true