Loading…
Optimal Hamiltonian Simulation by Quantum Signal Processing
The physics of quantum mechanics is the inspiration for, and underlies, quantum computation. As such, one expects physical intuition to be highly influential in the understanding and design of many quantum algorithms, particularly simulation of physical systems. Surprisingly, this has been challengi...
Saved in:
Published in: | Physical review letters 2017-01, Vol.118 (1), p.010501-010501 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 010501 |
container_issue | 1 |
container_start_page | 010501 |
container_title | Physical review letters |
container_volume | 118 |
creator | Low, Guang Hao Chuang, Isaac L |
description | The physics of quantum mechanics is the inspiration for, and underlies, quantum computation. As such, one expects physical intuition to be highly influential in the understanding and design of many quantum algorithms, particularly simulation of physical systems. Surprisingly, this has been challenging, with current Hamiltonian simulation algorithms remaining abstract and often the result of sophisticated but unintuitive constructions. We contend that physical intuition can lead to optimal simulation methods by showing that a focus on simple single-qubit rotations elegantly furnishes an optimal algorithm for Hamiltonian simulation, a universal problem that encapsulates all the power of quantum computation. Specifically, we show that the query complexity of implementing time evolution by a d-sparse Hamiltonian H[over ^] for time-interval t with error ε is O[td∥H[over ^]∥_{max}+log(1/ε)/loglog(1/ε)], which matches lower bounds in all parameters. This connection is made through general three-step "quantum signal processing" methodology, comprised of (i) transducing eigenvalues of H[over ^] into a single ancilla qubit, (ii) transforming these eigenvalues through an optimal-length sequence of single-qubit rotations, and (iii) projecting this ancilla with near unity success probability. |
doi_str_mv | 10.1103/PhysRevLett.118.010501 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884110060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884110060</sourcerecordid><originalsourceid>FETCH-LOGICAL-p174t-914e52cbb68c563d2000706787f798bb0bd4c85b6ea40ff36247e48c881bfb883</originalsourceid><addsrcrecordid>eNqNkEtLw0AUhQdRbK3-hZKlm9R7M5OZG1xJUSsUWl_rMJNOaiQvMxOh_94B697VgcPH4fAxNkdYIAK_2X4c3Iv9XlvvQ0ELQEgBT9gUQWWxQhSnbArAMc4A1IRdOPcJAJhIOmeThBCkQD5lt5veV42uo5Vuqtp3baXb6LVqxlr7qmsjc4ieR936sQntvg3gdugK61zV7i_ZWalrZ6-OOWPvD_dvy1W83jw-Le_WcY9K-DhDYdOkMEZSkUq-S8IPBVKRKlVGxoDZiYJSI60WUJZcJkJZQQURmtIQ8Rm7_t3th-5rtM7nTeUKW9e6td3ociQSQQpI-AcqMaWESAV0fkRH09hd3g_Bw3DI_9zwH21vZ54</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861582887</pqid></control><display><type>article</type><title>Optimal Hamiltonian Simulation by Quantum Signal Processing</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Low, Guang Hao ; Chuang, Isaac L</creator><creatorcontrib>Low, Guang Hao ; Chuang, Isaac L</creatorcontrib><description>The physics of quantum mechanics is the inspiration for, and underlies, quantum computation. As such, one expects physical intuition to be highly influential in the understanding and design of many quantum algorithms, particularly simulation of physical systems. Surprisingly, this has been challenging, with current Hamiltonian simulation algorithms remaining abstract and often the result of sophisticated but unintuitive constructions. We contend that physical intuition can lead to optimal simulation methods by showing that a focus on simple single-qubit rotations elegantly furnishes an optimal algorithm for Hamiltonian simulation, a universal problem that encapsulates all the power of quantum computation. Specifically, we show that the query complexity of implementing time evolution by a d-sparse Hamiltonian H[over ^] for time-interval t with error ε is O[td∥H[over ^]∥_{max}+log(1/ε)/loglog(1/ε)], which matches lower bounds in all parameters. This connection is made through general three-step "quantum signal processing" methodology, comprised of (i) transducing eigenvalues of H[over ^] into a single ancilla qubit, (ii) transforming these eigenvalues through an optimal-length sequence of single-qubit rotations, and (iii) projecting this ancilla with near unity success probability.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.118.010501</identifier><identifier>PMID: 28106413</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Computation ; Computer simulation ; Eigenvalues ; Inspiration ; Optimization ; Qubits (quantum computing) ; Signal processing</subject><ispartof>Physical review letters, 2017-01, Vol.118 (1), p.010501-010501</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28106413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Low, Guang Hao</creatorcontrib><creatorcontrib>Chuang, Isaac L</creatorcontrib><title>Optimal Hamiltonian Simulation by Quantum Signal Processing</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The physics of quantum mechanics is the inspiration for, and underlies, quantum computation. As such, one expects physical intuition to be highly influential in the understanding and design of many quantum algorithms, particularly simulation of physical systems. Surprisingly, this has been challenging, with current Hamiltonian simulation algorithms remaining abstract and often the result of sophisticated but unintuitive constructions. We contend that physical intuition can lead to optimal simulation methods by showing that a focus on simple single-qubit rotations elegantly furnishes an optimal algorithm for Hamiltonian simulation, a universal problem that encapsulates all the power of quantum computation. Specifically, we show that the query complexity of implementing time evolution by a d-sparse Hamiltonian H[over ^] for time-interval t with error ε is O[td∥H[over ^]∥_{max}+log(1/ε)/loglog(1/ε)], which matches lower bounds in all parameters. This connection is made through general three-step "quantum signal processing" methodology, comprised of (i) transducing eigenvalues of H[over ^] into a single ancilla qubit, (ii) transforming these eigenvalues through an optimal-length sequence of single-qubit rotations, and (iii) projecting this ancilla with near unity success probability.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Eigenvalues</subject><subject>Inspiration</subject><subject>Optimization</subject><subject>Qubits (quantum computing)</subject><subject>Signal processing</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLw0AUhQdRbK3-hZKlm9R7M5OZG1xJUSsUWl_rMJNOaiQvMxOh_94B697VgcPH4fAxNkdYIAK_2X4c3Iv9XlvvQ0ELQEgBT9gUQWWxQhSnbArAMc4A1IRdOPcJAJhIOmeThBCkQD5lt5veV42uo5Vuqtp3baXb6LVqxlr7qmsjc4ieR936sQntvg3gdugK61zV7i_ZWalrZ6-OOWPvD_dvy1W83jw-Le_WcY9K-DhDYdOkMEZSkUq-S8IPBVKRKlVGxoDZiYJSI60WUJZcJkJZQQURmtIQ8Rm7_t3th-5rtM7nTeUKW9e6td3ociQSQQpI-AcqMaWESAV0fkRH09hd3g_Bw3DI_9zwH21vZ54</recordid><startdate>20170106</startdate><enddate>20170106</enddate><creator>Low, Guang Hao</creator><creator>Chuang, Isaac L</creator><scope>NPM</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170106</creationdate><title>Optimal Hamiltonian Simulation by Quantum Signal Processing</title><author>Low, Guang Hao ; Chuang, Isaac L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p174t-914e52cbb68c563d2000706787f798bb0bd4c85b6ea40ff36247e48c881bfb883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Eigenvalues</topic><topic>Inspiration</topic><topic>Optimization</topic><topic>Qubits (quantum computing)</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Low, Guang Hao</creatorcontrib><creatorcontrib>Chuang, Isaac L</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Low, Guang Hao</au><au>Chuang, Isaac L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Hamiltonian Simulation by Quantum Signal Processing</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2017-01-06</date><risdate>2017</risdate><volume>118</volume><issue>1</issue><spage>010501</spage><epage>010501</epage><pages>010501-010501</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The physics of quantum mechanics is the inspiration for, and underlies, quantum computation. As such, one expects physical intuition to be highly influential in the understanding and design of many quantum algorithms, particularly simulation of physical systems. Surprisingly, this has been challenging, with current Hamiltonian simulation algorithms remaining abstract and often the result of sophisticated but unintuitive constructions. We contend that physical intuition can lead to optimal simulation methods by showing that a focus on simple single-qubit rotations elegantly furnishes an optimal algorithm for Hamiltonian simulation, a universal problem that encapsulates all the power of quantum computation. Specifically, we show that the query complexity of implementing time evolution by a d-sparse Hamiltonian H[over ^] for time-interval t with error ε is O[td∥H[over ^]∥_{max}+log(1/ε)/loglog(1/ε)], which matches lower bounds in all parameters. This connection is made through general three-step "quantum signal processing" methodology, comprised of (i) transducing eigenvalues of H[over ^] into a single ancilla qubit, (ii) transforming these eigenvalues through an optimal-length sequence of single-qubit rotations, and (iii) projecting this ancilla with near unity success probability.</abstract><cop>United States</cop><pmid>28106413</pmid><doi>10.1103/PhysRevLett.118.010501</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2017-01, Vol.118 (1), p.010501-010501 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884110060 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Algorithms Computation Computer simulation Eigenvalues Inspiration Optimization Qubits (quantum computing) Signal processing |
title | Optimal Hamiltonian Simulation by Quantum Signal Processing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Hamiltonian%20Simulation%20by%20Quantum%20Signal%20Processing&rft.jtitle=Physical%20review%20letters&rft.au=Low,%20Guang%20Hao&rft.date=2017-01-06&rft.volume=118&rft.issue=1&rft.spage=010501&rft.epage=010501&rft.pages=010501-010501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.118.010501&rft_dat=%3Cproquest_pubme%3E1884110060%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p174t-914e52cbb68c563d2000706787f798bb0bd4c85b6ea40ff36247e48c881bfb883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1861582887&rft_id=info:pmid/28106413&rfr_iscdi=true |