Loading…

Energy efficient clustering algorithms for wireless sensor networks: novel chemical reaction optimization approach

Clustering has been accepted as one of the most efficient techniques for conserving energy of wireless sensor networks (WSNs). However, in a two-tiered cluster based WSN, cluster heads (CHs) consume more energy due to extra overload for receiving data from their member sensor nodes, aggregating them...

Full description

Saved in:
Bibliographic Details
Published in:Wireless networks 2017-02, Vol.23 (2), p.433-452
Main Authors: Srinivasa Rao, P. C., Banka, Haider
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Clustering has been accepted as one of the most efficient techniques for conserving energy of wireless sensor networks (WSNs). However, in a two-tiered cluster based WSN, cluster heads (CHs) consume more energy due to extra overload for receiving data from their member sensor nodes, aggregating them and transmitting that data to the base station (BS). Therefore, proper selection of CHs and optimal formation of clusters play a crucial role to conserve the energy of sensor nodes for prolonging the lifetime of WSNs. In this paper, we propose an energy efficient CH selection and energy balanced cluster formation algorithms, which are based on novel chemical reaction optimization technique (nCRO), we jointly called these algorithms as novel CRO based energy efficient clustering algorithms (nCRO-ECA). These algorithms are developed with efficient schemes of molecular structure encoding and potential energy functions. For the energy efficiency, we consider various parameters such as intra-cluster distance, sink distance and residual energy of sensor nodes in the CH selection phase. In the cluster formation phase, we consider various distance and energy parameters. The algorithm is tested extensively on various scenarios of WSNs by varying number of sensor nodes and CHs. The results are compared with original CRO based algorithm, namely CRO-ECA and some existing algorithms to demonstrate the superiority of the proposed algorithm in terms of energy consumption, network lifetime, packets received by the BS and convergence rate.
ISSN:1022-0038
1572-8196
DOI:10.1007/s11276-015-1156-0