Loading…
Accurate and Efficient Computation of Laplacian Spectral Distances and Kernels
This paper introduces the Laplacian spectral distances, as a function that resembles the usual distance map, but exhibits properties (e.g. smoothness, locality, invariance to shape transformations) that make them useful to processing and analysing geometric data. Spectral distances are easily define...
Saved in:
Published in: | Computer graphics forum 2017-01, Vol.36 (1), p.184-196 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3304-2a4ec4cf4f3e06ddbedcbac6a08371756ca8dc3a9ae6dce66cdfcd74fe4afc53 |
---|---|
cites | cdi_FETCH-LOGICAL-c3304-2a4ec4cf4f3e06ddbedcbac6a08371756ca8dc3a9ae6dce66cdfcd74fe4afc53 |
container_end_page | 196 |
container_issue | 1 |
container_start_page | 184 |
container_title | Computer graphics forum |
container_volume | 36 |
creator | Patane, Giuseppe |
description | This paper introduces the Laplacian spectral distances, as a function that resembles the usual distance map, but exhibits properties (e.g. smoothness, locality, invariance to shape transformations) that make them useful to processing and analysing geometric data. Spectral distances are easily defined through a filtering of the Laplacian eigenpairs and reduce to the heat diffusion, wave, biharmonic and commute‐time distances for specific filters. In particular, the smoothness of the spectral distances and the encoding of local and global shape properties depend on the convergence of the filtered eigenvalues to zero. Instead of applying a truncated spectral approximation or prolongation operators, we propose a computation of Laplacian distances and kernels through the solution of sparse linear systems. Our approach is free of user‐defined parameters, overcomes the evaluation of the Laplacian spectrum and guarantees a higher approximation accuracy than previous work.
This paper introduces the Laplacian spectral distances, as a function that resembles the usual distancemap, but exhibits properties (e.g. smoothness, locality, invariance to shape transformations) that make them useful to processing and analysing geometric data. Spectral distances are easily defined through a filtering of the Laplacian eigenpairs and reduce to the heat diffusion, wave, biharmonic and commutetime distances for specific filters. In particular, the smoothness of the spectral distances and the encoding of local and global shape properties depend on the convergence of the filtered eigenvalues to zero. |
doi_str_mv | 10.1111/cgf.12794 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884119892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1906938487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3304-2a4ec4cf4f3e06ddbedcbac6a08371756ca8dc3a9ae6dce66cdfcd74fe4afc53</originalsourceid><addsrcrecordid>eNp10MFOwzAMBuAIgcQYHHiDSlzg0C1Z06Q9TmMbiAkO7B55roM6dWlJWqG9PWXlhIQv9uGzZf2M3Qo-EX1N8cNOxEzn8oyNhFQ6zlSan7MRF_2seZpesqsQ9pxzqVU6Yq9zxM5DSxG4IlpaW2JJro0W9aHpWmjL2kW1jTbQVIAluOi9IWw9VNFjGVpwSOG0-ULeURWu2YWFKtDNbx-z7Wq5XTzFm7f182K-iTFJuIxnIAklWmkT4qoodlTgDlABzxItdKoQsgITyIFUgaQUFhYLLS1JsJgmY3Y_nG18_dlRaM2hDEhVBY7qLhiRZVKIPMtnPb37Q_d1513_nBE5V3mSyUz36mFQ6OsQPFnT-PIA_mgENz_Bmj5Ycwq2t9PBfpUVHf-HZrFeDRvf7597Eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1906938487</pqid></control><display><type>article</type><title>Accurate and Efficient Computation of Laplacian Spectral Distances and Kernels</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Wiley</source><source>EBSCOhost Art & Architecture Source</source><creator>Patane, Giuseppe</creator><creatorcontrib>Patane, Giuseppe</creatorcontrib><description>This paper introduces the Laplacian spectral distances, as a function that resembles the usual distance map, but exhibits properties (e.g. smoothness, locality, invariance to shape transformations) that make them useful to processing and analysing geometric data. Spectral distances are easily defined through a filtering of the Laplacian eigenpairs and reduce to the heat diffusion, wave, biharmonic and commute‐time distances for specific filters. In particular, the smoothness of the spectral distances and the encoding of local and global shape properties depend on the convergence of the filtered eigenvalues to zero. Instead of applying a truncated spectral approximation or prolongation operators, we propose a computation of Laplacian distances and kernels through the solution of sparse linear systems. Our approach is free of user‐defined parameters, overcomes the evaluation of the Laplacian spectrum and guarantees a higher approximation accuracy than previous work.
This paper introduces the Laplacian spectral distances, as a function that resembles the usual distancemap, but exhibits properties (e.g. smoothness, locality, invariance to shape transformations) that make them useful to processing and analysing geometric data. Spectral distances are easily defined through a filtering of the Laplacian eigenpairs and reduce to the heat diffusion, wave, biharmonic and commutetime distances for specific filters. In particular, the smoothness of the spectral distances and the encoding of local and global shape properties depend on the convergence of the filtered eigenvalues to zero.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.12794</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Accuracy ; Approximation ; Coding ; Computational efficiency ; Computer Graphics [Computing methodologies]: Shape modelling ; Convergence ; digital geometry processing ; Eigenvalues ; Electromagnetic wave filters ; Filtering ; geometric modelling ; Invariance ; Kernels ; Linear systems ; Mathematical analysis ; Mathematical models ; modelling ; Operators ; Prolongation ; Smoothness ; Spectra ; Systems analysis ; Transformations (mathematics)</subject><ispartof>Computer graphics forum, 2017-01, Vol.36 (1), p.184-196</ispartof><rights>2016 The Authors Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.</rights><rights>2017 The Eurographics Association and John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3304-2a4ec4cf4f3e06ddbedcbac6a08371756ca8dc3a9ae6dce66cdfcd74fe4afc53</citedby><cites>FETCH-LOGICAL-c3304-2a4ec4cf4f3e06ddbedcbac6a08371756ca8dc3a9ae6dce66cdfcd74fe4afc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Patane, Giuseppe</creatorcontrib><title>Accurate and Efficient Computation of Laplacian Spectral Distances and Kernels</title><title>Computer graphics forum</title><description>This paper introduces the Laplacian spectral distances, as a function that resembles the usual distance map, but exhibits properties (e.g. smoothness, locality, invariance to shape transformations) that make them useful to processing and analysing geometric data. Spectral distances are easily defined through a filtering of the Laplacian eigenpairs and reduce to the heat diffusion, wave, biharmonic and commute‐time distances for specific filters. In particular, the smoothness of the spectral distances and the encoding of local and global shape properties depend on the convergence of the filtered eigenvalues to zero. Instead of applying a truncated spectral approximation or prolongation operators, we propose a computation of Laplacian distances and kernels through the solution of sparse linear systems. Our approach is free of user‐defined parameters, overcomes the evaluation of the Laplacian spectrum and guarantees a higher approximation accuracy than previous work.
This paper introduces the Laplacian spectral distances, as a function that resembles the usual distancemap, but exhibits properties (e.g. smoothness, locality, invariance to shape transformations) that make them useful to processing and analysing geometric data. Spectral distances are easily defined through a filtering of the Laplacian eigenpairs and reduce to the heat diffusion, wave, biharmonic and commutetime distances for specific filters. In particular, the smoothness of the spectral distances and the encoding of local and global shape properties depend on the convergence of the filtered eigenvalues to zero.</description><subject>Accuracy</subject><subject>Approximation</subject><subject>Coding</subject><subject>Computational efficiency</subject><subject>Computer Graphics [Computing methodologies]: Shape modelling</subject><subject>Convergence</subject><subject>digital geometry processing</subject><subject>Eigenvalues</subject><subject>Electromagnetic wave filters</subject><subject>Filtering</subject><subject>geometric modelling</subject><subject>Invariance</subject><subject>Kernels</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>modelling</subject><subject>Operators</subject><subject>Prolongation</subject><subject>Smoothness</subject><subject>Spectra</subject><subject>Systems analysis</subject><subject>Transformations (mathematics)</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10MFOwzAMBuAIgcQYHHiDSlzg0C1Z06Q9TmMbiAkO7B55roM6dWlJWqG9PWXlhIQv9uGzZf2M3Qo-EX1N8cNOxEzn8oyNhFQ6zlSan7MRF_2seZpesqsQ9pxzqVU6Yq9zxM5DSxG4IlpaW2JJro0W9aHpWmjL2kW1jTbQVIAluOi9IWw9VNFjGVpwSOG0-ULeURWu2YWFKtDNbx-z7Wq5XTzFm7f182K-iTFJuIxnIAklWmkT4qoodlTgDlABzxItdKoQsgITyIFUgaQUFhYLLS1JsJgmY3Y_nG18_dlRaM2hDEhVBY7qLhiRZVKIPMtnPb37Q_d1513_nBE5V3mSyUz36mFQ6OsQPFnT-PIA_mgENz_Bmj5Ycwq2t9PBfpUVHf-HZrFeDRvf7597Eg</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Patane, Giuseppe</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201701</creationdate><title>Accurate and Efficient Computation of Laplacian Spectral Distances and Kernels</title><author>Patane, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3304-2a4ec4cf4f3e06ddbedcbac6a08371756ca8dc3a9ae6dce66cdfcd74fe4afc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Approximation</topic><topic>Coding</topic><topic>Computational efficiency</topic><topic>Computer Graphics [Computing methodologies]: Shape modelling</topic><topic>Convergence</topic><topic>digital geometry processing</topic><topic>Eigenvalues</topic><topic>Electromagnetic wave filters</topic><topic>Filtering</topic><topic>geometric modelling</topic><topic>Invariance</topic><topic>Kernels</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>modelling</topic><topic>Operators</topic><topic>Prolongation</topic><topic>Smoothness</topic><topic>Spectra</topic><topic>Systems analysis</topic><topic>Transformations (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patane, Giuseppe</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patane, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate and Efficient Computation of Laplacian Spectral Distances and Kernels</atitle><jtitle>Computer graphics forum</jtitle><date>2017-01</date><risdate>2017</risdate><volume>36</volume><issue>1</issue><spage>184</spage><epage>196</epage><pages>184-196</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>This paper introduces the Laplacian spectral distances, as a function that resembles the usual distance map, but exhibits properties (e.g. smoothness, locality, invariance to shape transformations) that make them useful to processing and analysing geometric data. Spectral distances are easily defined through a filtering of the Laplacian eigenpairs and reduce to the heat diffusion, wave, biharmonic and commute‐time distances for specific filters. In particular, the smoothness of the spectral distances and the encoding of local and global shape properties depend on the convergence of the filtered eigenvalues to zero. Instead of applying a truncated spectral approximation or prolongation operators, we propose a computation of Laplacian distances and kernels through the solution of sparse linear systems. Our approach is free of user‐defined parameters, overcomes the evaluation of the Laplacian spectrum and guarantees a higher approximation accuracy than previous work.
This paper introduces the Laplacian spectral distances, as a function that resembles the usual distancemap, but exhibits properties (e.g. smoothness, locality, invariance to shape transformations) that make them useful to processing and analysing geometric data. Spectral distances are easily defined through a filtering of the Laplacian eigenpairs and reduce to the heat diffusion, wave, biharmonic and commutetime distances for specific filters. In particular, the smoothness of the spectral distances and the encoding of local and global shape properties depend on the convergence of the filtered eigenvalues to zero.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.12794</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7055 |
ispartof | Computer graphics forum, 2017-01, Vol.36 (1), p.184-196 |
issn | 0167-7055 1467-8659 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884119892 |
source | Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Wiley; EBSCOhost Art & Architecture Source |
subjects | Accuracy Approximation Coding Computational efficiency Computer Graphics [Computing methodologies]: Shape modelling Convergence digital geometry processing Eigenvalues Electromagnetic wave filters Filtering geometric modelling Invariance Kernels Linear systems Mathematical analysis Mathematical models modelling Operators Prolongation Smoothness Spectra Systems analysis Transformations (mathematics) |
title | Accurate and Efficient Computation of Laplacian Spectral Distances and Kernels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20and%20Efficient%20Computation%20of%20Laplacian%20Spectral%20Distances%20and%20Kernels&rft.jtitle=Computer%20graphics%20forum&rft.au=Patane,%20Giuseppe&rft.date=2017-01&rft.volume=36&rft.issue=1&rft.spage=184&rft.epage=196&rft.pages=184-196&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.12794&rft_dat=%3Cproquest_cross%3E1906938487%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3304-2a4ec4cf4f3e06ddbedcbac6a08371756ca8dc3a9ae6dce66cdfcd74fe4afc53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1906938487&rft_id=info:pmid/&rfr_iscdi=true |