Loading…

Accurate and Efficient Computation of Laplacian Spectral Distances and Kernels

This paper introduces the Laplacian spectral distances, as a function that resembles the usual distance map, but exhibits properties (e.g. smoothness, locality, invariance to shape transformations) that make them useful to processing and analysing geometric data. Spectral distances are easily define...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum 2017-01, Vol.36 (1), p.184-196
Main Author: Patane, Giuseppe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3304-2a4ec4cf4f3e06ddbedcbac6a08371756ca8dc3a9ae6dce66cdfcd74fe4afc53
cites cdi_FETCH-LOGICAL-c3304-2a4ec4cf4f3e06ddbedcbac6a08371756ca8dc3a9ae6dce66cdfcd74fe4afc53
container_end_page 196
container_issue 1
container_start_page 184
container_title Computer graphics forum
container_volume 36
creator Patane, Giuseppe
description This paper introduces the Laplacian spectral distances, as a function that resembles the usual distance map, but exhibits properties (e.g. smoothness, locality, invariance to shape transformations) that make them useful to processing and analysing geometric data. Spectral distances are easily defined through a filtering of the Laplacian eigenpairs and reduce to the heat diffusion, wave, biharmonic and commute‐time distances for specific filters. In particular, the smoothness of the spectral distances and the encoding of local and global shape properties depend on the convergence of the filtered eigenvalues to zero. Instead of applying a truncated spectral approximation or prolongation operators, we propose a computation of Laplacian distances and kernels through the solution of sparse linear systems. Our approach is free of user‐defined parameters, overcomes the evaluation of the Laplacian spectrum and guarantees a higher approximation accuracy than previous work. This paper introduces the Laplacian spectral distances, as a function that resembles the usual distancemap, but exhibits properties (e.g. smoothness, locality, invariance to shape transformations) that make them useful to processing and analysing geometric data. Spectral distances are easily defined through a filtering of the Laplacian eigenpairs and reduce to the heat diffusion, wave, biharmonic and commutetime distances for specific filters. In particular, the smoothness of the spectral distances and the encoding of local and global shape properties depend on the convergence of the filtered eigenvalues to zero.
doi_str_mv 10.1111/cgf.12794
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884119892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1906938487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3304-2a4ec4cf4f3e06ddbedcbac6a08371756ca8dc3a9ae6dce66cdfcd74fe4afc53</originalsourceid><addsrcrecordid>eNp10MFOwzAMBuAIgcQYHHiDSlzg0C1Z06Q9TmMbiAkO7B55roM6dWlJWqG9PWXlhIQv9uGzZf2M3Qo-EX1N8cNOxEzn8oyNhFQ6zlSan7MRF_2seZpesqsQ9pxzqVU6Yq9zxM5DSxG4IlpaW2JJro0W9aHpWmjL2kW1jTbQVIAluOi9IWw9VNFjGVpwSOG0-ULeURWu2YWFKtDNbx-z7Wq5XTzFm7f182K-iTFJuIxnIAklWmkT4qoodlTgDlABzxItdKoQsgITyIFUgaQUFhYLLS1JsJgmY3Y_nG18_dlRaM2hDEhVBY7qLhiRZVKIPMtnPb37Q_d1513_nBE5V3mSyUz36mFQ6OsQPFnT-PIA_mgENz_Bmj5Ycwq2t9PBfpUVHf-HZrFeDRvf7597Eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1906938487</pqid></control><display><type>article</type><title>Accurate and Efficient Computation of Laplacian Spectral Distances and Kernels</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Wiley</source><source>EBSCOhost Art &amp; Architecture Source</source><creator>Patane, Giuseppe</creator><creatorcontrib>Patane, Giuseppe</creatorcontrib><description>This paper introduces the Laplacian spectral distances, as a function that resembles the usual distance map, but exhibits properties (e.g. smoothness, locality, invariance to shape transformations) that make them useful to processing and analysing geometric data. Spectral distances are easily defined through a filtering of the Laplacian eigenpairs and reduce to the heat diffusion, wave, biharmonic and commute‐time distances for specific filters. In particular, the smoothness of the spectral distances and the encoding of local and global shape properties depend on the convergence of the filtered eigenvalues to zero. Instead of applying a truncated spectral approximation or prolongation operators, we propose a computation of Laplacian distances and kernels through the solution of sparse linear systems. Our approach is free of user‐defined parameters, overcomes the evaluation of the Laplacian spectrum and guarantees a higher approximation accuracy than previous work. This paper introduces the Laplacian spectral distances, as a function that resembles the usual distancemap, but exhibits properties (e.g. smoothness, locality, invariance to shape transformations) that make them useful to processing and analysing geometric data. Spectral distances are easily defined through a filtering of the Laplacian eigenpairs and reduce to the heat diffusion, wave, biharmonic and commutetime distances for specific filters. In particular, the smoothness of the spectral distances and the encoding of local and global shape properties depend on the convergence of the filtered eigenvalues to zero.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.12794</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Accuracy ; Approximation ; Coding ; Computational efficiency ; Computer Graphics [Computing methodologies]: Shape modelling ; Convergence ; digital geometry processing ; Eigenvalues ; Electromagnetic wave filters ; Filtering ; geometric modelling ; Invariance ; Kernels ; Linear systems ; Mathematical analysis ; Mathematical models ; modelling ; Operators ; Prolongation ; Smoothness ; Spectra ; Systems analysis ; Transformations (mathematics)</subject><ispartof>Computer graphics forum, 2017-01, Vol.36 (1), p.184-196</ispartof><rights>2016 The Authors Computer Graphics Forum © 2016 The Eurographics Association and John Wiley &amp; Sons Ltd.</rights><rights>2017 The Eurographics Association and John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3304-2a4ec4cf4f3e06ddbedcbac6a08371756ca8dc3a9ae6dce66cdfcd74fe4afc53</citedby><cites>FETCH-LOGICAL-c3304-2a4ec4cf4f3e06ddbedcbac6a08371756ca8dc3a9ae6dce66cdfcd74fe4afc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Patane, Giuseppe</creatorcontrib><title>Accurate and Efficient Computation of Laplacian Spectral Distances and Kernels</title><title>Computer graphics forum</title><description>This paper introduces the Laplacian spectral distances, as a function that resembles the usual distance map, but exhibits properties (e.g. smoothness, locality, invariance to shape transformations) that make them useful to processing and analysing geometric data. Spectral distances are easily defined through a filtering of the Laplacian eigenpairs and reduce to the heat diffusion, wave, biharmonic and commute‐time distances for specific filters. In particular, the smoothness of the spectral distances and the encoding of local and global shape properties depend on the convergence of the filtered eigenvalues to zero. Instead of applying a truncated spectral approximation or prolongation operators, we propose a computation of Laplacian distances and kernels through the solution of sparse linear systems. Our approach is free of user‐defined parameters, overcomes the evaluation of the Laplacian spectrum and guarantees a higher approximation accuracy than previous work. This paper introduces the Laplacian spectral distances, as a function that resembles the usual distancemap, but exhibits properties (e.g. smoothness, locality, invariance to shape transformations) that make them useful to processing and analysing geometric data. Spectral distances are easily defined through a filtering of the Laplacian eigenpairs and reduce to the heat diffusion, wave, biharmonic and commutetime distances for specific filters. In particular, the smoothness of the spectral distances and the encoding of local and global shape properties depend on the convergence of the filtered eigenvalues to zero.</description><subject>Accuracy</subject><subject>Approximation</subject><subject>Coding</subject><subject>Computational efficiency</subject><subject>Computer Graphics [Computing methodologies]: Shape modelling</subject><subject>Convergence</subject><subject>digital geometry processing</subject><subject>Eigenvalues</subject><subject>Electromagnetic wave filters</subject><subject>Filtering</subject><subject>geometric modelling</subject><subject>Invariance</subject><subject>Kernels</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>modelling</subject><subject>Operators</subject><subject>Prolongation</subject><subject>Smoothness</subject><subject>Spectra</subject><subject>Systems analysis</subject><subject>Transformations (mathematics)</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10MFOwzAMBuAIgcQYHHiDSlzg0C1Z06Q9TmMbiAkO7B55roM6dWlJWqG9PWXlhIQv9uGzZf2M3Qo-EX1N8cNOxEzn8oyNhFQ6zlSan7MRF_2seZpesqsQ9pxzqVU6Yq9zxM5DSxG4IlpaW2JJro0W9aHpWmjL2kW1jTbQVIAluOi9IWw9VNFjGVpwSOG0-ULeURWu2YWFKtDNbx-z7Wq5XTzFm7f182K-iTFJuIxnIAklWmkT4qoodlTgDlABzxItdKoQsgITyIFUgaQUFhYLLS1JsJgmY3Y_nG18_dlRaM2hDEhVBY7qLhiRZVKIPMtnPb37Q_d1513_nBE5V3mSyUz36mFQ6OsQPFnT-PIA_mgENz_Bmj5Ycwq2t9PBfpUVHf-HZrFeDRvf7597Eg</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Patane, Giuseppe</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201701</creationdate><title>Accurate and Efficient Computation of Laplacian Spectral Distances and Kernels</title><author>Patane, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3304-2a4ec4cf4f3e06ddbedcbac6a08371756ca8dc3a9ae6dce66cdfcd74fe4afc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Approximation</topic><topic>Coding</topic><topic>Computational efficiency</topic><topic>Computer Graphics [Computing methodologies]: Shape modelling</topic><topic>Convergence</topic><topic>digital geometry processing</topic><topic>Eigenvalues</topic><topic>Electromagnetic wave filters</topic><topic>Filtering</topic><topic>geometric modelling</topic><topic>Invariance</topic><topic>Kernels</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>modelling</topic><topic>Operators</topic><topic>Prolongation</topic><topic>Smoothness</topic><topic>Spectra</topic><topic>Systems analysis</topic><topic>Transformations (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patane, Giuseppe</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patane, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate and Efficient Computation of Laplacian Spectral Distances and Kernels</atitle><jtitle>Computer graphics forum</jtitle><date>2017-01</date><risdate>2017</risdate><volume>36</volume><issue>1</issue><spage>184</spage><epage>196</epage><pages>184-196</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>This paper introduces the Laplacian spectral distances, as a function that resembles the usual distance map, but exhibits properties (e.g. smoothness, locality, invariance to shape transformations) that make them useful to processing and analysing geometric data. Spectral distances are easily defined through a filtering of the Laplacian eigenpairs and reduce to the heat diffusion, wave, biharmonic and commute‐time distances for specific filters. In particular, the smoothness of the spectral distances and the encoding of local and global shape properties depend on the convergence of the filtered eigenvalues to zero. Instead of applying a truncated spectral approximation or prolongation operators, we propose a computation of Laplacian distances and kernels through the solution of sparse linear systems. Our approach is free of user‐defined parameters, overcomes the evaluation of the Laplacian spectrum and guarantees a higher approximation accuracy than previous work. This paper introduces the Laplacian spectral distances, as a function that resembles the usual distancemap, but exhibits properties (e.g. smoothness, locality, invariance to shape transformations) that make them useful to processing and analysing geometric data. Spectral distances are easily defined through a filtering of the Laplacian eigenpairs and reduce to the heat diffusion, wave, biharmonic and commutetime distances for specific filters. In particular, the smoothness of the spectral distances and the encoding of local and global shape properties depend on the convergence of the filtered eigenvalues to zero.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.12794</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-7055
ispartof Computer graphics forum, 2017-01, Vol.36 (1), p.184-196
issn 0167-7055
1467-8659
language eng
recordid cdi_proquest_miscellaneous_1884119892
source Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Wiley; EBSCOhost Art & Architecture Source
subjects Accuracy
Approximation
Coding
Computational efficiency
Computer Graphics [Computing methodologies]: Shape modelling
Convergence
digital geometry processing
Eigenvalues
Electromagnetic wave filters
Filtering
geometric modelling
Invariance
Kernels
Linear systems
Mathematical analysis
Mathematical models
modelling
Operators
Prolongation
Smoothness
Spectra
Systems analysis
Transformations (mathematics)
title Accurate and Efficient Computation of Laplacian Spectral Distances and Kernels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20and%20Efficient%20Computation%20of%20Laplacian%20Spectral%20Distances%20and%20Kernels&rft.jtitle=Computer%20graphics%20forum&rft.au=Patane,%20Giuseppe&rft.date=2017-01&rft.volume=36&rft.issue=1&rft.spage=184&rft.epage=196&rft.pages=184-196&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.12794&rft_dat=%3Cproquest_cross%3E1906938487%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3304-2a4ec4cf4f3e06ddbedcbac6a08371756ca8dc3a9ae6dce66cdfcd74fe4afc53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1906938487&rft_id=info:pmid/&rfr_iscdi=true