Loading…
Laser-shocked energetic materials with metal additives: evaluation of chemistry and detonation performance
A focused, nanosecond-pulsed laser has been used to ablate, atomize, ionize, and excite milligram quantities of metal-doped energetic materials that undergo exothermic reactions in the laser-induced plasma. The subsequent shock wave expansion in the air above the sample has been monitored using high...
Saved in:
Published in: | Applied optics (2004) 2017-01, Vol.56 (3), p.B47-B57 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c324t-210c6961aea53791d7eae28809c93429a61028d4fcbe7f53bcd9e1b24c33f79b3 |
---|---|
cites | |
container_end_page | B57 |
container_issue | 3 |
container_start_page | B47 |
container_title | Applied optics (2004) |
container_volume | 56 |
creator | Gottfried, Jennifer L Bukowski, Eric J |
description | A focused, nanosecond-pulsed laser has been used to ablate, atomize, ionize, and excite milligram quantities of metal-doped energetic materials that undergo exothermic reactions in the laser-induced plasma. The subsequent shock wave expansion in the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The method enables the estimation of detonation velocities based on the measured laser-induced air-shock velocities and has previously been demonstrated for organic military explosives. Here, the LASEM technique has been extended to explosive formulations with metal additives. A comparison of the measured laser-induced air-shock velocities for TNT, RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by the thermochemical code CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time ( |
doi_str_mv | 10.1364/AO.56.000B47 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884120110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884120110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-210c6961aea53791d7eae28809c93429a61028d4fcbe7f53bcd9e1b24c33f79b3</originalsourceid><addsrcrecordid>eNo1kMtLAzEYxIMotlZvniVHL1vz3E28afEFhV4UvC3Z5Fubuo-aZCv9711oPc3A_BiGQeiakjnlubh7WM1lPieEPIriBE0ZlTLjNJenaDpanVGmPifoIsYNIVwKXZyjCVNUFioXU7RZmgghi-vefoPD0EH4guQtbk2C4E0T8a9Pa9xCMg02zvnkdxDvMexMM5jk-w73NbZraH1MYY9N57CD1HeHbAuh7kNrOguX6Kwe--DqqDP08fz0vnjNlquXt8XDMrOciZQxSmyuc2rASF5o6gowwJQi2moumDY5JUw5UdsKilryyjoNtGLCcl4XuuIzdHvo3Yb-Z4CYynGahaYxHfRDLKlSgjJCKRnRmyM6VC24cht8a8K-_P-H_wGfUWi_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884120110</pqid></control><display><type>article</type><title>Laser-shocked energetic materials with metal additives: evaluation of chemistry and detonation performance</title><source>OSA Publishing</source><creator>Gottfried, Jennifer L ; Bukowski, Eric J</creator><creatorcontrib>Gottfried, Jennifer L ; Bukowski, Eric J</creatorcontrib><description>A focused, nanosecond-pulsed laser has been used to ablate, atomize, ionize, and excite milligram quantities of metal-doped energetic materials that undergo exothermic reactions in the laser-induced plasma. The subsequent shock wave expansion in the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The method enables the estimation of detonation velocities based on the measured laser-induced air-shock velocities and has previously been demonstrated for organic military explosives. Here, the LASEM technique has been extended to explosive formulations with metal additives. A comparison of the measured laser-induced air-shock velocities for TNT, RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by the thermochemical code CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time (<10 μs) participation of metal additives in detonation events. The LASEM results show that while Al is mostly inert at early times in the detonation event (confirmed from large-scale detonation testing), B is active-and reducing the amount of hydrogen present during the early chemical reactions increases the resulting estimated detonation velocities.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>DOI: 10.1364/AO.56.000B47</identifier><identifier>PMID: 28157864</identifier><language>eng</language><publisher>United States</publisher><subject>Additives ; Aluminum ; Detonation ; Energetic materials ; Explosive forming ; Imaging ; Inert ; Nanostructure</subject><ispartof>Applied optics (2004), 2017-01, Vol.56 (3), p.B47-B57</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-210c6961aea53791d7eae28809c93429a61028d4fcbe7f53bcd9e1b24c33f79b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28157864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gottfried, Jennifer L</creatorcontrib><creatorcontrib>Bukowski, Eric J</creatorcontrib><title>Laser-shocked energetic materials with metal additives: evaluation of chemistry and detonation performance</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>A focused, nanosecond-pulsed laser has been used to ablate, atomize, ionize, and excite milligram quantities of metal-doped energetic materials that undergo exothermic reactions in the laser-induced plasma. The subsequent shock wave expansion in the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The method enables the estimation of detonation velocities based on the measured laser-induced air-shock velocities and has previously been demonstrated for organic military explosives. Here, the LASEM technique has been extended to explosive formulations with metal additives. A comparison of the measured laser-induced air-shock velocities for TNT, RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by the thermochemical code CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time (<10 μs) participation of metal additives in detonation events. The LASEM results show that while Al is mostly inert at early times in the detonation event (confirmed from large-scale detonation testing), B is active-and reducing the amount of hydrogen present during the early chemical reactions increases the resulting estimated detonation velocities.</description><subject>Additives</subject><subject>Aluminum</subject><subject>Detonation</subject><subject>Energetic materials</subject><subject>Explosive forming</subject><subject>Imaging</subject><subject>Inert</subject><subject>Nanostructure</subject><issn>1559-128X</issn><issn>2155-3165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo1kMtLAzEYxIMotlZvniVHL1vz3E28afEFhV4UvC3Z5Fubuo-aZCv9711oPc3A_BiGQeiakjnlubh7WM1lPieEPIriBE0ZlTLjNJenaDpanVGmPifoIsYNIVwKXZyjCVNUFioXU7RZmgghi-vefoPD0EH4guQtbk2C4E0T8a9Pa9xCMg02zvnkdxDvMexMM5jk-w73NbZraH1MYY9N57CD1HeHbAuh7kNrOguX6Kwe--DqqDP08fz0vnjNlquXt8XDMrOciZQxSmyuc2rASF5o6gowwJQi2moumDY5JUw5UdsKilryyjoNtGLCcl4XuuIzdHvo3Yb-Z4CYynGahaYxHfRDLKlSgjJCKRnRmyM6VC24cht8a8K-_P-H_wGfUWi_</recordid><startdate>20170120</startdate><enddate>20170120</enddate><creator>Gottfried, Jennifer L</creator><creator>Bukowski, Eric J</creator><scope>NPM</scope><scope>7QF</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170120</creationdate><title>Laser-shocked energetic materials with metal additives: evaluation of chemistry and detonation performance</title><author>Gottfried, Jennifer L ; Bukowski, Eric J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-210c6961aea53791d7eae28809c93429a61028d4fcbe7f53bcd9e1b24c33f79b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Additives</topic><topic>Aluminum</topic><topic>Detonation</topic><topic>Energetic materials</topic><topic>Explosive forming</topic><topic>Imaging</topic><topic>Inert</topic><topic>Nanostructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gottfried, Jennifer L</creatorcontrib><creatorcontrib>Bukowski, Eric J</creatorcontrib><collection>PubMed</collection><collection>Aluminium Industry Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gottfried, Jennifer L</au><au>Bukowski, Eric J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser-shocked energetic materials with metal additives: evaluation of chemistry and detonation performance</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2017-01-20</date><risdate>2017</risdate><volume>56</volume><issue>3</issue><spage>B47</spage><epage>B57</epage><pages>B47-B57</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><abstract>A focused, nanosecond-pulsed laser has been used to ablate, atomize, ionize, and excite milligram quantities of metal-doped energetic materials that undergo exothermic reactions in the laser-induced plasma. The subsequent shock wave expansion in the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The method enables the estimation of detonation velocities based on the measured laser-induced air-shock velocities and has previously been demonstrated for organic military explosives. Here, the LASEM technique has been extended to explosive formulations with metal additives. A comparison of the measured laser-induced air-shock velocities for TNT, RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by the thermochemical code CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time (<10 μs) participation of metal additives in detonation events. The LASEM results show that while Al is mostly inert at early times in the detonation event (confirmed from large-scale detonation testing), B is active-and reducing the amount of hydrogen present during the early chemical reactions increases the resulting estimated detonation velocities.</abstract><cop>United States</cop><pmid>28157864</pmid><doi>10.1364/AO.56.000B47</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied optics (2004), 2017-01, Vol.56 (3), p.B47-B57 |
issn | 1559-128X 2155-3165 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884120110 |
source | OSA Publishing |
subjects | Additives Aluminum Detonation Energetic materials Explosive forming Imaging Inert Nanostructure |
title | Laser-shocked energetic materials with metal additives: evaluation of chemistry and detonation performance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser-shocked%20energetic%20materials%20with%20metal%20additives:%20evaluation%20of%20chemistry%20and%20detonation%20performance&rft.jtitle=Applied%20optics%20(2004)&rft.au=Gottfried,%20Jennifer%20L&rft.date=2017-01-20&rft.volume=56&rft.issue=3&rft.spage=B47&rft.epage=B57&rft.pages=B47-B57&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.56.000B47&rft_dat=%3Cproquest_pubme%3E1884120110%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-210c6961aea53791d7eae28809c93429a61028d4fcbe7f53bcd9e1b24c33f79b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1884120110&rft_id=info:pmid/28157864&rfr_iscdi=true |