Loading…

Rainbow Matchings and Algebras of Sets

Grinblat (Algebras of Sets and Combinatorics, Translations of Mathematical Monographs, vol. 214. AMS, Providence, 2002 ) asks the following question in the context of algebras of sets: What is the smallest number v = v ( n ) such that, if A 1 , … , A n are n equivalence relations on a common finite...

Full description

Saved in:
Bibliographic Details
Published in:Graphs and combinatorics 2017-03, Vol.33 (2), p.473-484
Main Authors: Nivasch, Gabriel, Omri, Eran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-7d04c93a9d774e295636eae513d545712614b8d6ea292250da9380b0f86fdabc3
cites cdi_FETCH-LOGICAL-c321t-7d04c93a9d774e295636eae513d545712614b8d6ea292250da9380b0f86fdabc3
container_end_page 484
container_issue 2
container_start_page 473
container_title Graphs and combinatorics
container_volume 33
creator Nivasch, Gabriel
Omri, Eran
description Grinblat (Algebras of Sets and Combinatorics, Translations of Mathematical Monographs, vol. 214. AMS, Providence, 2002 ) asks the following question in the context of algebras of sets: What is the smallest number v = v ( n ) such that, if A 1 , … , A n are n equivalence relations on a common finite ground set X , such that for each i there are at least v elements of X that belong to A i -equivalence classes of size larger than 1, then X has a rainbow matching—a set of 2 n distinct elements a 1 , b 1 , … , a n , b n , such that a i is A i -equivalent to b i for each i ? Grinblat has shown that v ( n ) ≤ 10 n / 3 + O ( n ) . He asks whether v ( n ) = 3 n - 2 for all n ≥ 4 . In this paper we improve the upper bound (for all large enough n ) to v ( n ) ≤ 16 n / 5 + O ( 1 ) .
doi_str_mv 10.1007/s00373-017-1764-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884121882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884121882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-7d04c93a9d774e295636eae513d545712614b8d6ea292250da9380b0f86fdabc3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFd_gLeexEt0Jh9Nc1wWv2BF8OMc0iatXbrtmnQR_71Z6tnLDMw878A8hFwi3CCAuo0AXHEKqCiqQlB9RDIUXFKpURyTDDRi2qI-JWcxbgBAooCMXL3abqjG7_zZTvVnN7Qxt4PLl33rq2BjPjb5m5_iOTlpbB_9xV9fkI_7u_fVI12_PDytlmtac4YTVQ5ErbnVTinhmZYFL7z1ErmTQipkBYqqdGnGNGMSnNW8hAqasmicrWq-INfz3V0Yv_Y-Tmbbxdr3vR38uI8Gy1IgS5UlFGe0DmOMwTdmF7qtDT8GwRycmNmJSU7MwYnRKcPmTEzs0PpgNuM-DOmjf0K_RMFhqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884121882</pqid></control><display><type>article</type><title>Rainbow Matchings and Algebras of Sets</title><source>Springer Nature</source><creator>Nivasch, Gabriel ; Omri, Eran</creator><creatorcontrib>Nivasch, Gabriel ; Omri, Eran</creatorcontrib><description>Grinblat (Algebras of Sets and Combinatorics, Translations of Mathematical Monographs, vol. 214. AMS, Providence, 2002 ) asks the following question in the context of algebras of sets: What is the smallest number v = v ( n ) such that, if A 1 , … , A n are n equivalence relations on a common finite ground set X , such that for each i there are at least v elements of X that belong to A i -equivalence classes of size larger than 1, then X has a rainbow matching—a set of 2 n distinct elements a 1 , b 1 , … , a n , b n , such that a i is A i -equivalent to b i for each i ? Grinblat has shown that v ( n ) ≤ 10 n / 3 + O ( n ) . He asks whether v ( n ) = 3 n - 2 for all n ≥ 4 . In this paper we improve the upper bound (for all large enough n ) to v ( n ) ≤ 16 n / 5 + O ( 1 ) .</description><identifier>ISSN: 0911-0119</identifier><identifier>EISSN: 1435-5914</identifier><identifier>DOI: 10.1007/s00373-017-1764-9</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Algebra ; Combinatorial analysis ; Combinatorics ; Engineering Design ; Equivalence ; Grounds ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Original Paper ; Rainbows ; Texts ; Translations</subject><ispartof>Graphs and combinatorics, 2017-03, Vol.33 (2), p.473-484</ispartof><rights>Springer Japan 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-7d04c93a9d774e295636eae513d545712614b8d6ea292250da9380b0f86fdabc3</citedby><cites>FETCH-LOGICAL-c321t-7d04c93a9d774e295636eae513d545712614b8d6ea292250da9380b0f86fdabc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nivasch, Gabriel</creatorcontrib><creatorcontrib>Omri, Eran</creatorcontrib><title>Rainbow Matchings and Algebras of Sets</title><title>Graphs and combinatorics</title><addtitle>Graphs and Combinatorics</addtitle><description>Grinblat (Algebras of Sets and Combinatorics, Translations of Mathematical Monographs, vol. 214. AMS, Providence, 2002 ) asks the following question in the context of algebras of sets: What is the smallest number v = v ( n ) such that, if A 1 , … , A n are n equivalence relations on a common finite ground set X , such that for each i there are at least v elements of X that belong to A i -equivalence classes of size larger than 1, then X has a rainbow matching—a set of 2 n distinct elements a 1 , b 1 , … , a n , b n , such that a i is A i -equivalent to b i for each i ? Grinblat has shown that v ( n ) ≤ 10 n / 3 + O ( n ) . He asks whether v ( n ) = 3 n - 2 for all n ≥ 4 . In this paper we improve the upper bound (for all large enough n ) to v ( n ) ≤ 16 n / 5 + O ( 1 ) .</description><subject>Algebra</subject><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Engineering Design</subject><subject>Equivalence</subject><subject>Grounds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Rainbows</subject><subject>Texts</subject><subject>Translations</subject><issn>0911-0119</issn><issn>1435-5914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMoWFd_gLeexEt0Jh9Nc1wWv2BF8OMc0iatXbrtmnQR_71Z6tnLDMw878A8hFwi3CCAuo0AXHEKqCiqQlB9RDIUXFKpURyTDDRi2qI-JWcxbgBAooCMXL3abqjG7_zZTvVnN7Qxt4PLl33rq2BjPjb5m5_iOTlpbB_9xV9fkI_7u_fVI12_PDytlmtac4YTVQ5ErbnVTinhmZYFL7z1ErmTQipkBYqqdGnGNGMSnNW8hAqasmicrWq-INfz3V0Yv_Y-Tmbbxdr3vR38uI8Gy1IgS5UlFGe0DmOMwTdmF7qtDT8GwRycmNmJSU7MwYnRKcPmTEzs0PpgNuM-DOmjf0K_RMFhqw</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Nivasch, Gabriel</creator><creator>Omri, Eran</creator><general>Springer Japan</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170301</creationdate><title>Rainbow Matchings and Algebras of Sets</title><author>Nivasch, Gabriel ; Omri, Eran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-7d04c93a9d774e295636eae513d545712614b8d6ea292250da9380b0f86fdabc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Engineering Design</topic><topic>Equivalence</topic><topic>Grounds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Rainbows</topic><topic>Texts</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nivasch, Gabriel</creatorcontrib><creatorcontrib>Omri, Eran</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Graphs and combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nivasch, Gabriel</au><au>Omri, Eran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rainbow Matchings and Algebras of Sets</atitle><jtitle>Graphs and combinatorics</jtitle><stitle>Graphs and Combinatorics</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>33</volume><issue>2</issue><spage>473</spage><epage>484</epage><pages>473-484</pages><issn>0911-0119</issn><eissn>1435-5914</eissn><abstract>Grinblat (Algebras of Sets and Combinatorics, Translations of Mathematical Monographs, vol. 214. AMS, Providence, 2002 ) asks the following question in the context of algebras of sets: What is the smallest number v = v ( n ) such that, if A 1 , … , A n are n equivalence relations on a common finite ground set X , such that for each i there are at least v elements of X that belong to A i -equivalence classes of size larger than 1, then X has a rainbow matching—a set of 2 n distinct elements a 1 , b 1 , … , a n , b n , such that a i is A i -equivalent to b i for each i ? Grinblat has shown that v ( n ) ≤ 10 n / 3 + O ( n ) . He asks whether v ( n ) = 3 n - 2 for all n ≥ 4 . In this paper we improve the upper bound (for all large enough n ) to v ( n ) ≤ 16 n / 5 + O ( 1 ) .</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s00373-017-1764-9</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0911-0119
ispartof Graphs and combinatorics, 2017-03, Vol.33 (2), p.473-484
issn 0911-0119
1435-5914
language eng
recordid cdi_proquest_miscellaneous_1884121882
source Springer Nature
subjects Algebra
Combinatorial analysis
Combinatorics
Engineering Design
Equivalence
Grounds
Mathematical analysis
Mathematics
Mathematics and Statistics
Original Paper
Rainbows
Texts
Translations
title Rainbow Matchings and Algebras of Sets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A08%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rainbow%20Matchings%20and%20Algebras%20of%20Sets&rft.jtitle=Graphs%20and%20combinatorics&rft.au=Nivasch,%20Gabriel&rft.date=2017-03-01&rft.volume=33&rft.issue=2&rft.spage=473&rft.epage=484&rft.pages=473-484&rft.issn=0911-0119&rft.eissn=1435-5914&rft_id=info:doi/10.1007/s00373-017-1764-9&rft_dat=%3Cproquest_cross%3E1884121882%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-7d04c93a9d774e295636eae513d545712614b8d6ea292250da9380b0f86fdabc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1884121882&rft_id=info:pmid/&rfr_iscdi=true