Loading…
Buckling Analysis of Smart Size-Dependent Higher Order Magneto-Electro-Thermo-Elastic Functionally Graded Nanosize Beams
The present paper examines the thermal buckling of nonlocal magneto-electro-thermo-elastic functionally graded (METE-FG) beams under various types of thermal loading namely uniform, linear and sinusoidal temperature rise and also heat conduction. The material properties of nanobeam are graded in the...
Saved in:
Published in: | Journal of mechanics 2017-02, Vol.33 (1), p.23-33 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c377t-48d316577d39dcb44428286723989645b467db2a23d0e024cbb7f252e0c10cec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c377t-48d316577d39dcb44428286723989645b467db2a23d0e024cbb7f252e0c10cec3 |
container_end_page | 33 |
container_issue | 1 |
container_start_page | 23 |
container_title | Journal of mechanics |
container_volume | 33 |
creator | Ebrahimi, F. Barati, M. R. |
description | The present paper examines the thermal buckling of nonlocal magneto-electro-thermo-elastic functionally graded (METE-FG) beams under various types of thermal loading namely uniform, linear and sinusoidal temperature rise and also heat conduction. The material properties of nanobeam are graded in the thickness direction according to the power-law distribution. Based on a higher order beam theory as well as Hamilton's principle, nonlocal governing equations for METE-FG nanobeam are derived and are solved using Navier type method. The small size effect is captured using Eringen's nonlocal elasticity theory. The most beneficial feature of the present beam model is to provide a parabolic variation of the transverse shear strains across the thickness direction and satisfies the zero traction boundary conditions on the top and bottom surfaces of the beam without using shear correction factors. Various numerical examples are presented investigating the influences of thermo-mechanical loadings, magnetic potential, external electric voltage, power-law index, nonlocal parameter and slenderness ratio on thermal buckling behavior of nanobeams made of METE-FG materials. |
doi_str_mv | 10.1017/jmech.2016.46 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884123447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jmech_2016_46</cupid><sourcerecordid>4313554461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-48d316577d39dcb44428286723989645b467db2a23d0e024cbb7f252e0c10cec3</originalsourceid><addsrcrecordid>eNptkT1PwzAQhiMEEggY2S2xsLi1Hdd2Rr6LBHQozJFjX1uXJC52IlF-PQ5lQAgP5zvdc69092bZGSUjSqgcrxswqxEjVIy42MuOqKIUK0bFfsolk1jSgh5mpzGuSXq8ICqfHGUfV715q127RJetrrfRReQXaN7o0KG5-wR8AxtoLbQdmrrlCgKaBZvik1620Hl8W4PpgscvqdUMpY6dM-iub03nfJKst-g-aAsWPevWxySJrkA38SQ7WOg6wunPf5y93t2-XE_x4-z-4fryEZtcyg5zZXMqJlLavLCm4pwzxZSQLC9UIfik4kLaimmWWwKEcVNVcsEmDIihxIDJj7OLne4m-PceYlc2Lhqoa92C72NJleKU5ZzLhJ7_Qde-D2mHgRKyIFJJkSi8o0zwMQZYlJvg0r22JSXlYEX5bUU5WFHygR__8LqpgrNL-CX778QXEp-MEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1867907876</pqid></control><display><type>article</type><title>Buckling Analysis of Smart Size-Dependent Higher Order Magneto-Electro-Thermo-Elastic Functionally Graded Nanosize Beams</title><source>ABI/INFORM global</source><source>Open Access: Oxford University Press Open Journals</source><creator>Ebrahimi, F. ; Barati, M. R.</creator><creatorcontrib>Ebrahimi, F. ; Barati, M. R.</creatorcontrib><description>The present paper examines the thermal buckling of nonlocal magneto-electro-thermo-elastic functionally graded (METE-FG) beams under various types of thermal loading namely uniform, linear and sinusoidal temperature rise and also heat conduction. The material properties of nanobeam are graded in the thickness direction according to the power-law distribution. Based on a higher order beam theory as well as Hamilton's principle, nonlocal governing equations for METE-FG nanobeam are derived and are solved using Navier type method. The small size effect is captured using Eringen's nonlocal elasticity theory. The most beneficial feature of the present beam model is to provide a parabolic variation of the transverse shear strains across the thickness direction and satisfies the zero traction boundary conditions on the top and bottom surfaces of the beam without using shear correction factors. Various numerical examples are presented investigating the influences of thermo-mechanical loadings, magnetic potential, external electric voltage, power-law index, nonlocal parameter and slenderness ratio on thermal buckling behavior of nanobeams made of METE-FG materials.</description><identifier>ISSN: 1727-7191</identifier><identifier>EISSN: 1811-8216</identifier><identifier>DOI: 10.1017/jmech.2016.46</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Analysis ; Boundary conditions ; Electric potential ; Fluid flow ; Functionally gradient materials ; Mathematical models ; Mechanics ; Nanostructure ; Nanotechnology ; Nonlocal elasticity ; Shear ; Shear strain ; Studies ; Temperature ; Thermal buckling</subject><ispartof>Journal of mechanics, 2017-02, Vol.33 (1), p.23-33</ispartof><rights>Copyright © The Society of Theoretical and Applied Mechanics 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-48d316577d39dcb44428286723989645b467db2a23d0e024cbb7f252e0c10cec3</citedby><cites>FETCH-LOGICAL-c377t-48d316577d39dcb44428286723989645b467db2a23d0e024cbb7f252e0c10cec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1867907876?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363</link.rule.ids></links><search><creatorcontrib>Ebrahimi, F.</creatorcontrib><creatorcontrib>Barati, M. R.</creatorcontrib><title>Buckling Analysis of Smart Size-Dependent Higher Order Magneto-Electro-Thermo-Elastic Functionally Graded Nanosize Beams</title><title>Journal of mechanics</title><addtitle>J. mech</addtitle><description>The present paper examines the thermal buckling of nonlocal magneto-electro-thermo-elastic functionally graded (METE-FG) beams under various types of thermal loading namely uniform, linear and sinusoidal temperature rise and also heat conduction. The material properties of nanobeam are graded in the thickness direction according to the power-law distribution. Based on a higher order beam theory as well as Hamilton's principle, nonlocal governing equations for METE-FG nanobeam are derived and are solved using Navier type method. The small size effect is captured using Eringen's nonlocal elasticity theory. The most beneficial feature of the present beam model is to provide a parabolic variation of the transverse shear strains across the thickness direction and satisfies the zero traction boundary conditions on the top and bottom surfaces of the beam without using shear correction factors. Various numerical examples are presented investigating the influences of thermo-mechanical loadings, magnetic potential, external electric voltage, power-law index, nonlocal parameter and slenderness ratio on thermal buckling behavior of nanobeams made of METE-FG materials.</description><subject>Analysis</subject><subject>Boundary conditions</subject><subject>Electric potential</subject><subject>Fluid flow</subject><subject>Functionally gradient materials</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nonlocal elasticity</subject><subject>Shear</subject><subject>Shear strain</subject><subject>Studies</subject><subject>Temperature</subject><subject>Thermal buckling</subject><issn>1727-7191</issn><issn>1811-8216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNptkT1PwzAQhiMEEggY2S2xsLi1Hdd2Rr6LBHQozJFjX1uXJC52IlF-PQ5lQAgP5zvdc69092bZGSUjSqgcrxswqxEjVIy42MuOqKIUK0bFfsolk1jSgh5mpzGuSXq8ICqfHGUfV715q127RJetrrfRReQXaN7o0KG5-wR8AxtoLbQdmrrlCgKaBZvik1620Hl8W4PpgscvqdUMpY6dM-iub03nfJKst-g-aAsWPevWxySJrkA38SQ7WOg6wunPf5y93t2-XE_x4-z-4fryEZtcyg5zZXMqJlLavLCm4pwzxZSQLC9UIfik4kLaimmWWwKEcVNVcsEmDIihxIDJj7OLne4m-PceYlc2Lhqoa92C72NJleKU5ZzLhJ7_Qde-D2mHgRKyIFJJkSi8o0zwMQZYlJvg0r22JSXlYEX5bUU5WFHygR__8LqpgrNL-CX778QXEp-MEw</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Ebrahimi, F.</creator><creator>Barati, M. R.</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>201702</creationdate><title>Buckling Analysis of Smart Size-Dependent Higher Order Magneto-Electro-Thermo-Elastic Functionally Graded Nanosize Beams</title><author>Ebrahimi, F. ; Barati, M. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-48d316577d39dcb44428286723989645b467db2a23d0e024cbb7f252e0c10cec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Boundary conditions</topic><topic>Electric potential</topic><topic>Fluid flow</topic><topic>Functionally gradient materials</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nonlocal elasticity</topic><topic>Shear</topic><topic>Shear strain</topic><topic>Studies</topic><topic>Temperature</topic><topic>Thermal buckling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebrahimi, F.</creatorcontrib><creatorcontrib>Barati, M. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM global</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebrahimi, F.</au><au>Barati, M. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Buckling Analysis of Smart Size-Dependent Higher Order Magneto-Electro-Thermo-Elastic Functionally Graded Nanosize Beams</atitle><jtitle>Journal of mechanics</jtitle><addtitle>J. mech</addtitle><date>2017-02</date><risdate>2017</risdate><volume>33</volume><issue>1</issue><spage>23</spage><epage>33</epage><pages>23-33</pages><issn>1727-7191</issn><eissn>1811-8216</eissn><abstract>The present paper examines the thermal buckling of nonlocal magneto-electro-thermo-elastic functionally graded (METE-FG) beams under various types of thermal loading namely uniform, linear and sinusoidal temperature rise and also heat conduction. The material properties of nanobeam are graded in the thickness direction according to the power-law distribution. Based on a higher order beam theory as well as Hamilton's principle, nonlocal governing equations for METE-FG nanobeam are derived and are solved using Navier type method. The small size effect is captured using Eringen's nonlocal elasticity theory. The most beneficial feature of the present beam model is to provide a parabolic variation of the transverse shear strains across the thickness direction and satisfies the zero traction boundary conditions on the top and bottom surfaces of the beam without using shear correction factors. Various numerical examples are presented investigating the influences of thermo-mechanical loadings, magnetic potential, external electric voltage, power-law index, nonlocal parameter and slenderness ratio on thermal buckling behavior of nanobeams made of METE-FG materials.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jmech.2016.46</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1727-7191 |
ispartof | Journal of mechanics, 2017-02, Vol.33 (1), p.23-33 |
issn | 1727-7191 1811-8216 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884123447 |
source | ABI/INFORM global; Open Access: Oxford University Press Open Journals |
subjects | Analysis Boundary conditions Electric potential Fluid flow Functionally gradient materials Mathematical models Mechanics Nanostructure Nanotechnology Nonlocal elasticity Shear Shear strain Studies Temperature Thermal buckling |
title | Buckling Analysis of Smart Size-Dependent Higher Order Magneto-Electro-Thermo-Elastic Functionally Graded Nanosize Beams |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A16%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Buckling%20Analysis%20of%20Smart%20Size-Dependent%20Higher%20Order%20Magneto-Electro-Thermo-Elastic%20Functionally%20Graded%20Nanosize%20Beams&rft.jtitle=Journal%20of%20mechanics&rft.au=Ebrahimi,%20F.&rft.date=2017-02&rft.volume=33&rft.issue=1&rft.spage=23&rft.epage=33&rft.pages=23-33&rft.issn=1727-7191&rft.eissn=1811-8216&rft_id=info:doi/10.1017/jmech.2016.46&rft_dat=%3Cproquest_cross%3E4313554461%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-48d316577d39dcb44428286723989645b467db2a23d0e024cbb7f252e0c10cec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1867907876&rft_id=info:pmid/&rft_cupid=10_1017_jmech_2016_46&rfr_iscdi=true |