Loading…

Transit probabilities around hypervelocity and runaway stars

In the blooming field of exoplanetary science, NASA's Kepler Space Telescope has revolutionized our understanding of exoplanets. Kepler's very precise and long-duration photometry is ideal for detecting planetary transits around Sun-like stars. The forthcoming Transiting Exoplanet Survey S...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2017-04, Vol.466 (2), p.1805-1805
Main Authors: Fragione, G, Ginsburg, I
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the blooming field of exoplanetary science, NASA's Kepler Space Telescope has revolutionized our understanding of exoplanets. Kepler's very precise and long-duration photometry is ideal for detecting planetary transits around Sun-like stars. The forthcoming Transiting Exoplanet Survey Satellite (TESS) is expected to continue Kepler's legacy. Along with transits, the Doppler technique remains an invaluable tool for discovering planets. The next generation of spectrographs, such as G-CLEF, promise precision radial velocity measurements. In this paper, we explore the possibility of detecting planets around hypervelocity and runaway stars, which should host a very compact system as consequence of their turbulent origin. We find that the probability of a multiplanetary transit is 10 super( -3) ... P ... 10 super( -1). We therefore need to observe ~10-1000 high-velocity stars to spot a transit. However, even if transits are rare around runaway and hypervelocity stars, the chances of detecting such planets using radial velocity surveys is high. We predict that the European Gaia satellite, along with TESS and the new-generation spectrographs G-CLEF and ESPRESSO, will spot planetary systems orbiting high-velocity stars. (ProQuest: ... denotes formulae/symbols omitted.)
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stw3213