Loading…

Monte Carlo simulations of magnetization state of ellipsoidal CoCu particles in disordered self-assembled arrays

Monte Carlo (MC) simulations of the magnetization states of disordered self-assembled arrays of particles consisting of Co87Cu13 alloy are investigated. The assemblies of magnetic particles with ellipsoidal shapes and volumes ranging from 5 to 50 µm3 exhibit densities of about 3 × 106 particles per...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2016-07, Vol.31 (14), p.2058-2064
Main Authors: Paes, V.Z.C., Varalda, J., Schio, P., Matsushima, J.T., Pereira, E.C., de Oliveira, A.J.A., Mosca, D.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c373t-9d2d25a7e7e789a704795a8bf7ba24f97f7cfeed9fbb41f3199d64ecc4a4499e3
cites cdi_FETCH-LOGICAL-c373t-9d2d25a7e7e789a704795a8bf7ba24f97f7cfeed9fbb41f3199d64ecc4a4499e3
container_end_page 2064
container_issue 14
container_start_page 2058
container_title Journal of materials research
container_volume 31
creator Paes, V.Z.C.
Varalda, J.
Schio, P.
Matsushima, J.T.
Pereira, E.C.
de Oliveira, A.J.A.
Mosca, D.H.
description Monte Carlo (MC) simulations of the magnetization states of disordered self-assembled arrays of particles consisting of Co87Cu13 alloy are investigated. The assemblies of magnetic particles with ellipsoidal shapes and volumes ranging from 5 to 50 µm3 exhibit densities of about 3 × 106 particles per mm2. Magnetization was obtained in the framework of Stoner–Wohlfarth model extended to include phenomenological contributions of second-order magnetic anisotropy and coercivity mechanism with distinct configuration of easy axes of magnetization. MC simulations for assemblies containing no more than 100 particles with negligible magnetic interaction between each other and exhibiting saturation magnetization and magnetic anisotropy constant values close to those found for cobalt in bulk are in good agreement with experimental results. We evaluate and validate our computational modeling using samples having particles with different sizes and different angular distributions of the easy axis of magnetization. A simple numerical approach with minimum of parameters was used to take into account the coercive fields of the samples. Reasonable simulation results are generated based on realistic size distributions and angular distributions of easy axis of magnetization. PACS numbers: 75.30.Gw,75.60-d,75.70-i
doi_str_mv 10.1557/jmr.2016.173
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884124151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2016_173</cupid><sourcerecordid>4130261111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-9d2d25a7e7e789a704795a8bf7ba24f97f7cfeed9fbb41f3199d64ecc4a4499e3</originalsourceid><addsrcrecordid>eNqF0E1r3DAQBmBRGsg2yS0_QNBLD_VGkuXV6lhMvyAhl-RsxtZo0SJbrsY-JL8-SjeHUgpFB6Hh0cvwMnYtxVY2jbk5jnmrhNxtpanfsY0SWldNrXbv2Ubs97pSVupz9oHoKIRshNEbNt-laUHeQo6JUxjXCEtIE_Hk-QiHCZfw_HvCaYECyxhjDDOl4CDyNrUrnyEvYYhIPEzcBUrZYUbHCaOvgAjHPpYn5AxPdMnOPETCq7f7gj1--_rQ_qhu77__bL_cVkNt6qWyTjnVgMFy9haM0MY2sO-96UFpb403g0d01ve9lr6W1rqdxmHQoLW1WF-wT6fcOadfK9LSjYGGsjtMmFbqZClEKi0bWejHv-gxrXkq2xUljGrsTpmiPp_UkBNRRt_NOYyQnzoputf6u1J_91p_V-ovvDpxKmw6YP4j9N9--xYPY5-DO-B_PrwAP6mYtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1807259627</pqid></control><display><type>article</type><title>Monte Carlo simulations of magnetization state of ellipsoidal CoCu particles in disordered self-assembled arrays</title><source>ABI/INFORM Global</source><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Paes, V.Z.C. ; Varalda, J. ; Schio, P. ; Matsushima, J.T. ; Pereira, E.C. ; de Oliveira, A.J.A. ; Mosca, D.H.</creator><creatorcontrib>Paes, V.Z.C. ; Varalda, J. ; Schio, P. ; Matsushima, J.T. ; Pereira, E.C. ; de Oliveira, A.J.A. ; Mosca, D.H.</creatorcontrib><description>Monte Carlo (MC) simulations of the magnetization states of disordered self-assembled arrays of particles consisting of Co87Cu13 alloy are investigated. The assemblies of magnetic particles with ellipsoidal shapes and volumes ranging from 5 to 50 µm3 exhibit densities of about 3 × 106 particles per mm2. Magnetization was obtained in the framework of Stoner–Wohlfarth model extended to include phenomenological contributions of second-order magnetic anisotropy and coercivity mechanism with distinct configuration of easy axes of magnetization. MC simulations for assemblies containing no more than 100 particles with negligible magnetic interaction between each other and exhibiting saturation magnetization and magnetic anisotropy constant values close to those found for cobalt in bulk are in good agreement with experimental results. We evaluate and validate our computational modeling using samples having particles with different sizes and different angular distributions of the easy axis of magnetization. A simple numerical approach with minimum of parameters was used to take into account the coercive fields of the samples. Reasonable simulation results are generated based on realistic size distributions and angular distributions of easy axis of magnetization. PACS numbers: 75.30.Gw,75.60-d,75.70-i</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2016.173</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Alloys ; Analysis ; Angular distribution ; Anisotropy ; Applied and Technical Physics ; Arrays ; Biomaterials ; Coercive force ; Computer simulation ; Inorganic Chemistry ; Magnetic anisotropy ; Magnetic fields ; Magnetism ; Magnetization ; Materials Engineering ; Materials research ; Materials Science ; Mathematical models ; Monte Carlo methods ; Monte Carlo simulation ; Morphology ; Nanotechnology ; Scanning electron microscopy ; Simulation ; Studies</subject><ispartof>Journal of materials research, 2016-07, Vol.31 (14), p.2058-2064</ispartof><rights>Copyright © Materials Research Society 2016</rights><rights>The Materials Research Society 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-9d2d25a7e7e789a704795a8bf7ba24f97f7cfeed9fbb41f3199d64ecc4a4499e3</citedby><cites>FETCH-LOGICAL-c373t-9d2d25a7e7e789a704795a8bf7ba24f97f7cfeed9fbb41f3199d64ecc4a4499e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1807259627/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1807259627?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11686,27922,27923,36058,36059,44361,74665</link.rule.ids></links><search><creatorcontrib>Paes, V.Z.C.</creatorcontrib><creatorcontrib>Varalda, J.</creatorcontrib><creatorcontrib>Schio, P.</creatorcontrib><creatorcontrib>Matsushima, J.T.</creatorcontrib><creatorcontrib>Pereira, E.C.</creatorcontrib><creatorcontrib>de Oliveira, A.J.A.</creatorcontrib><creatorcontrib>Mosca, D.H.</creatorcontrib><title>Monte Carlo simulations of magnetization state of ellipsoidal CoCu particles in disordered self-assembled arrays</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Monte Carlo (MC) simulations of the magnetization states of disordered self-assembled arrays of particles consisting of Co87Cu13 alloy are investigated. The assemblies of magnetic particles with ellipsoidal shapes and volumes ranging from 5 to 50 µm3 exhibit densities of about 3 × 106 particles per mm2. Magnetization was obtained in the framework of Stoner–Wohlfarth model extended to include phenomenological contributions of second-order magnetic anisotropy and coercivity mechanism with distinct configuration of easy axes of magnetization. MC simulations for assemblies containing no more than 100 particles with negligible magnetic interaction between each other and exhibiting saturation magnetization and magnetic anisotropy constant values close to those found for cobalt in bulk are in good agreement with experimental results. We evaluate and validate our computational modeling using samples having particles with different sizes and different angular distributions of the easy axis of magnetization. A simple numerical approach with minimum of parameters was used to take into account the coercive fields of the samples. Reasonable simulation results are generated based on realistic size distributions and angular distributions of easy axis of magnetization. PACS numbers: 75.30.Gw,75.60-d,75.70-i</description><subject>Alloys</subject><subject>Analysis</subject><subject>Angular distribution</subject><subject>Anisotropy</subject><subject>Applied and Technical Physics</subject><subject>Arrays</subject><subject>Biomaterials</subject><subject>Coercive force</subject><subject>Computer simulation</subject><subject>Inorganic Chemistry</subject><subject>Magnetic anisotropy</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Scanning electron microscopy</subject><subject>Simulation</subject><subject>Studies</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqF0E1r3DAQBmBRGsg2yS0_QNBLD_VGkuXV6lhMvyAhl-RsxtZo0SJbrsY-JL8-SjeHUgpFB6Hh0cvwMnYtxVY2jbk5jnmrhNxtpanfsY0SWldNrXbv2Ubs97pSVupz9oHoKIRshNEbNt-laUHeQo6JUxjXCEtIE_Hk-QiHCZfw_HvCaYECyxhjDDOl4CDyNrUrnyEvYYhIPEzcBUrZYUbHCaOvgAjHPpYn5AxPdMnOPETCq7f7gj1--_rQ_qhu77__bL_cVkNt6qWyTjnVgMFy9haM0MY2sO-96UFpb403g0d01ve9lr6W1rqdxmHQoLW1WF-wT6fcOadfK9LSjYGGsjtMmFbqZClEKi0bWejHv-gxrXkq2xUljGrsTpmiPp_UkBNRRt_NOYyQnzoputf6u1J_91p_V-ovvDpxKmw6YP4j9N9--xYPY5-DO-B_PrwAP6mYtQ</recordid><startdate>20160728</startdate><enddate>20160728</enddate><creator>Paes, V.Z.C.</creator><creator>Varalda, J.</creator><creator>Schio, P.</creator><creator>Matsushima, J.T.</creator><creator>Pereira, E.C.</creator><creator>de Oliveira, A.J.A.</creator><creator>Mosca, D.H.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20160728</creationdate><title>Monte Carlo simulations of magnetization state of ellipsoidal CoCu particles in disordered self-assembled arrays</title><author>Paes, V.Z.C. ; Varalda, J. ; Schio, P. ; Matsushima, J.T. ; Pereira, E.C. ; de Oliveira, A.J.A. ; Mosca, D.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-9d2d25a7e7e789a704795a8bf7ba24f97f7cfeed9fbb41f3199d64ecc4a4499e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alloys</topic><topic>Analysis</topic><topic>Angular distribution</topic><topic>Anisotropy</topic><topic>Applied and Technical Physics</topic><topic>Arrays</topic><topic>Biomaterials</topic><topic>Coercive force</topic><topic>Computer simulation</topic><topic>Inorganic Chemistry</topic><topic>Magnetic anisotropy</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Scanning electron microscopy</topic><topic>Simulation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paes, V.Z.C.</creatorcontrib><creatorcontrib>Varalda, J.</creatorcontrib><creatorcontrib>Schio, P.</creatorcontrib><creatorcontrib>Matsushima, J.T.</creatorcontrib><creatorcontrib>Pereira, E.C.</creatorcontrib><creatorcontrib>de Oliveira, A.J.A.</creatorcontrib><creatorcontrib>Mosca, D.H.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paes, V.Z.C.</au><au>Varalda, J.</au><au>Schio, P.</au><au>Matsushima, J.T.</au><au>Pereira, E.C.</au><au>de Oliveira, A.J.A.</au><au>Mosca, D.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo simulations of magnetization state of ellipsoidal CoCu particles in disordered self-assembled arrays</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2016-07-28</date><risdate>2016</risdate><volume>31</volume><issue>14</issue><spage>2058</spage><epage>2064</epage><pages>2058-2064</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>Monte Carlo (MC) simulations of the magnetization states of disordered self-assembled arrays of particles consisting of Co87Cu13 alloy are investigated. The assemblies of magnetic particles with ellipsoidal shapes and volumes ranging from 5 to 50 µm3 exhibit densities of about 3 × 106 particles per mm2. Magnetization was obtained in the framework of Stoner–Wohlfarth model extended to include phenomenological contributions of second-order magnetic anisotropy and coercivity mechanism with distinct configuration of easy axes of magnetization. MC simulations for assemblies containing no more than 100 particles with negligible magnetic interaction between each other and exhibiting saturation magnetization and magnetic anisotropy constant values close to those found for cobalt in bulk are in good agreement with experimental results. We evaluate and validate our computational modeling using samples having particles with different sizes and different angular distributions of the easy axis of magnetization. A simple numerical approach with minimum of parameters was used to take into account the coercive fields of the samples. Reasonable simulation results are generated based on realistic size distributions and angular distributions of easy axis of magnetization. PACS numbers: 75.30.Gw,75.60-d,75.70-i</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2016.173</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2016-07, Vol.31 (14), p.2058-2064
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_miscellaneous_1884124151
source ABI/INFORM Global; Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Alloys
Analysis
Angular distribution
Anisotropy
Applied and Technical Physics
Arrays
Biomaterials
Coercive force
Computer simulation
Inorganic Chemistry
Magnetic anisotropy
Magnetic fields
Magnetism
Magnetization
Materials Engineering
Materials research
Materials Science
Mathematical models
Monte Carlo methods
Monte Carlo simulation
Morphology
Nanotechnology
Scanning electron microscopy
Simulation
Studies
title Monte Carlo simulations of magnetization state of ellipsoidal CoCu particles in disordered self-assembled arrays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20simulations%20of%20magnetization%20state%20of%20ellipsoidal%20CoCu%20particles%20in%20disordered%20self-assembled%20arrays&rft.jtitle=Journal%20of%20materials%20research&rft.au=Paes,%20V.Z.C.&rft.date=2016-07-28&rft.volume=31&rft.issue=14&rft.spage=2058&rft.epage=2064&rft.pages=2058-2064&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2016.173&rft_dat=%3Cproquest_cross%3E4130261111%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-9d2d25a7e7e789a704795a8bf7ba24f97f7cfeed9fbb41f3199d64ecc4a4499e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1807259627&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2016_173&rfr_iscdi=true