Loading…
Towards Globally Optimal Normal Orientations for Large Point Clouds
Various processing algorithms on point set surfaces rely on consistently oriented normals (e.g. Poisson surface reconstruction). While several approaches exist for the calculation of normal directions, in most cases, their orientation has to be determined in a subsequent step. This paper generalizes...
Saved in:
Published in: | Computer graphics forum 2017-01, Vol.36 (1), p.197-208 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Various processing algorithms on point set surfaces rely on consistently oriented normals (e.g. Poisson surface reconstruction). While several approaches exist for the calculation of normal directions, in most cases, their orientation has to be determined in a subsequent step. This paper generalizes propagation‐based approaches by reformulating the task as a graph‐based energy minimization problem. By applying global solvers, we can achieve more consistent orientations than simple greedy optimizations. Furthermore, we present a streaming‐based framework for orienting large point clouds. This framework orients patches locally and generates a globally consistent patch orientation on a reduced neighbour graph, which achieves similar quality to orienting the full graph.
Various processing algorithms on point set surfaces rely on consistently oriented normals (e.g. Poisson surface reconstruction).While several approaches exist for the calculation of normal directions, in most cases, their orientation has to be determined in a subsequent step. This paper generalizes propagation‐based approaches by reformulating the task as a graph‐based energy minimization problem and presents a streaming‐based out‐of‐core implementation. |
---|---|
ISSN: | 0167-7055 1467-8659 |
DOI: | 10.1111/cgf.12795 |