Loading…

Towards Globally Optimal Normal Orientations for Large Point Clouds

Various processing algorithms on point set surfaces rely on consistently oriented normals (e.g. Poisson surface reconstruction). While several approaches exist for the calculation of normal directions, in most cases, their orientation has to be determined in a subsequent step. This paper generalizes...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum 2017-01, Vol.36 (1), p.197-208
Main Authors: Schertler, Nico, Savchynskyy, Bogdan, Gumhold, Stefan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3655-d64cbc7497dd5b425208a8aa58355b4ce0a8d472c0e69b5fa5cd289017ffd6a23
cites cdi_FETCH-LOGICAL-c3655-d64cbc7497dd5b425208a8aa58355b4ce0a8d472c0e69b5fa5cd289017ffd6a23
container_end_page 208
container_issue 1
container_start_page 197
container_title Computer graphics forum
container_volume 36
creator Schertler, Nico
Savchynskyy, Bogdan
Gumhold, Stefan
description Various processing algorithms on point set surfaces rely on consistently oriented normals (e.g. Poisson surface reconstruction). While several approaches exist for the calculation of normal directions, in most cases, their orientation has to be determined in a subsequent step. This paper generalizes propagation‐based approaches by reformulating the task as a graph‐based energy minimization problem. By applying global solvers, we can achieve more consistent orientations than simple greedy optimizations. Furthermore, we present a streaming‐based framework for orienting large point clouds. This framework orients patches locally and generates a globally consistent patch orientation on a reduced neighbour graph, which achieves similar quality to orienting the full graph. Various processing algorithms on point set surfaces rely on consistently oriented normals (e.g. Poisson surface reconstruction).While several approaches exist for the calculation of normal directions, in most cases, their orientation has to be determined in a subsequent step. This paper generalizes propagation‐based approaches by reformulating the task as a graph‐based energy minimization problem and presents a streaming‐based out‐of‐core implementation.
doi_str_mv 10.1111/cgf.12795
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884125244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1906936599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3655-d64cbc7497dd5b425208a8aa58355b4ce0a8d472c0e69b5fa5cd289017ffd6a23</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsHv8GCFz1sm2zz9yiLrUKxHuo5ZJNs2ZJuarJL2W9v6noSnMubgd8Mbx4A9wjOUKq53tUzVDBBLsAEYcpyTom4BBOIUs8gIdfgJsY9hBAzSiag3PqTCiZmK-cr5dyQbY5dc1Aue_fhLJvQ2LZTXePbmNU-ZGsVdjb78E3bZaXzvYm34KpWLtq7X52Cz-XLtnzN15vVW_m8zvWCEpIbinWlGRbMGFLhghSQK64U4QuSZm2h4gazQkNLRUVqRbQpuICI1bWhqlhMweN49xj8V29jJw9N1NY51VrfR4k4xyidxTihD3_Qve9Dm9xJJCAVyZAQiXoaKR18jMHW8hjS72GQCMpznDLFKX_iTOx8ZE-Ns8P_oCxXy3HjG-NadVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1906936599</pqid></control><display><type>article</type><title>Towards Globally Optimal Normal Orientations for Large Point Clouds</title><source>EBSCOhost Business Source Ultimate</source><source>EBSCOhost Art &amp; Architecture Source</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Schertler, Nico ; Savchynskyy, Bogdan ; Gumhold, Stefan</creator><creatorcontrib>Schertler, Nico ; Savchynskyy, Bogdan ; Gumhold, Stefan</creatorcontrib><description>Various processing algorithms on point set surfaces rely on consistently oriented normals (e.g. Poisson surface reconstruction). While several approaches exist for the calculation of normal directions, in most cases, their orientation has to be determined in a subsequent step. This paper generalizes propagation‐based approaches by reformulating the task as a graph‐based energy minimization problem. By applying global solvers, we can achieve more consistent orientations than simple greedy optimizations. Furthermore, we present a streaming‐based framework for orienting large point clouds. This framework orients patches locally and generates a globally consistent patch orientation on a reduced neighbour graph, which achieves similar quality to orienting the full graph. Various processing algorithms on point set surfaces rely on consistently oriented normals (e.g. Poisson surface reconstruction).While several approaches exist for the calculation of normal directions, in most cases, their orientation has to be determined in a subsequent step. This paper generalizes propagation‐based approaches by reformulating the task as a graph‐based energy minimization problem and presents a streaming‐based out‐of‐core implementation.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.12795</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Algorithms ; computational geometry ; digital geometry processing ; Energy conservation ; Graphs ; I.3.5 [Computer Graphics]: Computational Geometry and Object Modelling‐Geometric algorithms, languages and systems ; Mathematical analysis ; modelling ; Optimization ; Orientation ; Patches (structures) ; Propagation ; Reconstruction ; Solvers ; Tasks ; Three dimensional models</subject><ispartof>Computer graphics forum, 2017-01, Vol.36 (1), p.197-208</ispartof><rights>2016 The Authors Computer Graphics Forum © 2016 The Eurographics Association and John Wiley &amp; Sons Ltd.</rights><rights>2017 The Eurographics Association and John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3655-d64cbc7497dd5b425208a8aa58355b4ce0a8d472c0e69b5fa5cd289017ffd6a23</citedby><cites>FETCH-LOGICAL-c3655-d64cbc7497dd5b425208a8aa58355b4ce0a8d472c0e69b5fa5cd289017ffd6a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Schertler, Nico</creatorcontrib><creatorcontrib>Savchynskyy, Bogdan</creatorcontrib><creatorcontrib>Gumhold, Stefan</creatorcontrib><title>Towards Globally Optimal Normal Orientations for Large Point Clouds</title><title>Computer graphics forum</title><description>Various processing algorithms on point set surfaces rely on consistently oriented normals (e.g. Poisson surface reconstruction). While several approaches exist for the calculation of normal directions, in most cases, their orientation has to be determined in a subsequent step. This paper generalizes propagation‐based approaches by reformulating the task as a graph‐based energy minimization problem. By applying global solvers, we can achieve more consistent orientations than simple greedy optimizations. Furthermore, we present a streaming‐based framework for orienting large point clouds. This framework orients patches locally and generates a globally consistent patch orientation on a reduced neighbour graph, which achieves similar quality to orienting the full graph. Various processing algorithms on point set surfaces rely on consistently oriented normals (e.g. Poisson surface reconstruction).While several approaches exist for the calculation of normal directions, in most cases, their orientation has to be determined in a subsequent step. This paper generalizes propagation‐based approaches by reformulating the task as a graph‐based energy minimization problem and presents a streaming‐based out‐of‐core implementation.</description><subject>Algorithms</subject><subject>computational geometry</subject><subject>digital geometry processing</subject><subject>Energy conservation</subject><subject>Graphs</subject><subject>I.3.5 [Computer Graphics]: Computational Geometry and Object Modelling‐Geometric algorithms, languages and systems</subject><subject>Mathematical analysis</subject><subject>modelling</subject><subject>Optimization</subject><subject>Orientation</subject><subject>Patches (structures)</subject><subject>Propagation</subject><subject>Reconstruction</subject><subject>Solvers</subject><subject>Tasks</subject><subject>Three dimensional models</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsHv8GCFz1sm2zz9yiLrUKxHuo5ZJNs2ZJuarJL2W9v6noSnMubgd8Mbx4A9wjOUKq53tUzVDBBLsAEYcpyTom4BBOIUs8gIdfgJsY9hBAzSiag3PqTCiZmK-cr5dyQbY5dc1Aue_fhLJvQ2LZTXePbmNU-ZGsVdjb78E3bZaXzvYm34KpWLtq7X52Cz-XLtnzN15vVW_m8zvWCEpIbinWlGRbMGFLhghSQK64U4QuSZm2h4gazQkNLRUVqRbQpuICI1bWhqlhMweN49xj8V29jJw9N1NY51VrfR4k4xyidxTihD3_Qve9Dm9xJJCAVyZAQiXoaKR18jMHW8hjS72GQCMpznDLFKX_iTOx8ZE-Ns8P_oCxXy3HjG-NadVs</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Schertler, Nico</creator><creator>Savchynskyy, Bogdan</creator><creator>Gumhold, Stefan</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201701</creationdate><title>Towards Globally Optimal Normal Orientations for Large Point Clouds</title><author>Schertler, Nico ; Savchynskyy, Bogdan ; Gumhold, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3655-d64cbc7497dd5b425208a8aa58355b4ce0a8d472c0e69b5fa5cd289017ffd6a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>computational geometry</topic><topic>digital geometry processing</topic><topic>Energy conservation</topic><topic>Graphs</topic><topic>I.3.5 [Computer Graphics]: Computational Geometry and Object Modelling‐Geometric algorithms, languages and systems</topic><topic>Mathematical analysis</topic><topic>modelling</topic><topic>Optimization</topic><topic>Orientation</topic><topic>Patches (structures)</topic><topic>Propagation</topic><topic>Reconstruction</topic><topic>Solvers</topic><topic>Tasks</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schertler, Nico</creatorcontrib><creatorcontrib>Savchynskyy, Bogdan</creatorcontrib><creatorcontrib>Gumhold, Stefan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schertler, Nico</au><au>Savchynskyy, Bogdan</au><au>Gumhold, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Globally Optimal Normal Orientations for Large Point Clouds</atitle><jtitle>Computer graphics forum</jtitle><date>2017-01</date><risdate>2017</risdate><volume>36</volume><issue>1</issue><spage>197</spage><epage>208</epage><pages>197-208</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Various processing algorithms on point set surfaces rely on consistently oriented normals (e.g. Poisson surface reconstruction). While several approaches exist for the calculation of normal directions, in most cases, their orientation has to be determined in a subsequent step. This paper generalizes propagation‐based approaches by reformulating the task as a graph‐based energy minimization problem. By applying global solvers, we can achieve more consistent orientations than simple greedy optimizations. Furthermore, we present a streaming‐based framework for orienting large point clouds. This framework orients patches locally and generates a globally consistent patch orientation on a reduced neighbour graph, which achieves similar quality to orienting the full graph. Various processing algorithms on point set surfaces rely on consistently oriented normals (e.g. Poisson surface reconstruction).While several approaches exist for the calculation of normal directions, in most cases, their orientation has to be determined in a subsequent step. This paper generalizes propagation‐based approaches by reformulating the task as a graph‐based energy minimization problem and presents a streaming‐based out‐of‐core implementation.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.12795</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-7055
ispartof Computer graphics forum, 2017-01, Vol.36 (1), p.197-208
issn 0167-7055
1467-8659
language eng
recordid cdi_proquest_miscellaneous_1884125244
source EBSCOhost Business Source Ultimate; EBSCOhost Art & Architecture Source; Wiley-Blackwell Read & Publish Collection
subjects Algorithms
computational geometry
digital geometry processing
Energy conservation
Graphs
I.3.5 [Computer Graphics]: Computational Geometry and Object Modelling‐Geometric algorithms, languages and systems
Mathematical analysis
modelling
Optimization
Orientation
Patches (structures)
Propagation
Reconstruction
Solvers
Tasks
Three dimensional models
title Towards Globally Optimal Normal Orientations for Large Point Clouds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A50%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Globally%20Optimal%20Normal%20Orientations%20for%20Large%20Point%20Clouds&rft.jtitle=Computer%20graphics%20forum&rft.au=Schertler,%20Nico&rft.date=2017-01&rft.volume=36&rft.issue=1&rft.spage=197&rft.epage=208&rft.pages=197-208&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.12795&rft_dat=%3Cproquest_cross%3E1906936599%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3655-d64cbc7497dd5b425208a8aa58355b4ce0a8d472c0e69b5fa5cd289017ffd6a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1906936599&rft_id=info:pmid/&rfr_iscdi=true