Loading…
Towards Globally Optimal Normal Orientations for Large Point Clouds
Various processing algorithms on point set surfaces rely on consistently oriented normals (e.g. Poisson surface reconstruction). While several approaches exist for the calculation of normal directions, in most cases, their orientation has to be determined in a subsequent step. This paper generalizes...
Saved in:
Published in: | Computer graphics forum 2017-01, Vol.36 (1), p.197-208 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3655-d64cbc7497dd5b425208a8aa58355b4ce0a8d472c0e69b5fa5cd289017ffd6a23 |
---|---|
cites | cdi_FETCH-LOGICAL-c3655-d64cbc7497dd5b425208a8aa58355b4ce0a8d472c0e69b5fa5cd289017ffd6a23 |
container_end_page | 208 |
container_issue | 1 |
container_start_page | 197 |
container_title | Computer graphics forum |
container_volume | 36 |
creator | Schertler, Nico Savchynskyy, Bogdan Gumhold, Stefan |
description | Various processing algorithms on point set surfaces rely on consistently oriented normals (e.g. Poisson surface reconstruction). While several approaches exist for the calculation of normal directions, in most cases, their orientation has to be determined in a subsequent step. This paper generalizes propagation‐based approaches by reformulating the task as a graph‐based energy minimization problem. By applying global solvers, we can achieve more consistent orientations than simple greedy optimizations. Furthermore, we present a streaming‐based framework for orienting large point clouds. This framework orients patches locally and generates a globally consistent patch orientation on a reduced neighbour graph, which achieves similar quality to orienting the full graph.
Various processing algorithms on point set surfaces rely on consistently oriented normals (e.g. Poisson surface reconstruction).While several approaches exist for the calculation of normal directions, in most cases, their orientation has to be determined in a subsequent step. This paper generalizes propagation‐based approaches by reformulating the task as a graph‐based energy minimization problem and presents a streaming‐based out‐of‐core implementation. |
doi_str_mv | 10.1111/cgf.12795 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884125244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1906936599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3655-d64cbc7497dd5b425208a8aa58355b4ce0a8d472c0e69b5fa5cd289017ffd6a23</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsHv8GCFz1sm2zz9yiLrUKxHuo5ZJNs2ZJuarJL2W9v6noSnMubgd8Mbx4A9wjOUKq53tUzVDBBLsAEYcpyTom4BBOIUs8gIdfgJsY9hBAzSiag3PqTCiZmK-cr5dyQbY5dc1Aue_fhLJvQ2LZTXePbmNU-ZGsVdjb78E3bZaXzvYm34KpWLtq7X52Cz-XLtnzN15vVW_m8zvWCEpIbinWlGRbMGFLhghSQK64U4QuSZm2h4gazQkNLRUVqRbQpuICI1bWhqlhMweN49xj8V29jJw9N1NY51VrfR4k4xyidxTihD3_Qve9Dm9xJJCAVyZAQiXoaKR18jMHW8hjS72GQCMpznDLFKX_iTOx8ZE-Ns8P_oCxXy3HjG-NadVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1906936599</pqid></control><display><type>article</type><title>Towards Globally Optimal Normal Orientations for Large Point Clouds</title><source>EBSCOhost Business Source Ultimate</source><source>EBSCOhost Art & Architecture Source</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Schertler, Nico ; Savchynskyy, Bogdan ; Gumhold, Stefan</creator><creatorcontrib>Schertler, Nico ; Savchynskyy, Bogdan ; Gumhold, Stefan</creatorcontrib><description>Various processing algorithms on point set surfaces rely on consistently oriented normals (e.g. Poisson surface reconstruction). While several approaches exist for the calculation of normal directions, in most cases, their orientation has to be determined in a subsequent step. This paper generalizes propagation‐based approaches by reformulating the task as a graph‐based energy minimization problem. By applying global solvers, we can achieve more consistent orientations than simple greedy optimizations. Furthermore, we present a streaming‐based framework for orienting large point clouds. This framework orients patches locally and generates a globally consistent patch orientation on a reduced neighbour graph, which achieves similar quality to orienting the full graph.
Various processing algorithms on point set surfaces rely on consistently oriented normals (e.g. Poisson surface reconstruction).While several approaches exist for the calculation of normal directions, in most cases, their orientation has to be determined in a subsequent step. This paper generalizes propagation‐based approaches by reformulating the task as a graph‐based energy minimization problem and presents a streaming‐based out‐of‐core implementation.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.12795</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Algorithms ; computational geometry ; digital geometry processing ; Energy conservation ; Graphs ; I.3.5 [Computer Graphics]: Computational Geometry and Object Modelling‐Geometric algorithms, languages and systems ; Mathematical analysis ; modelling ; Optimization ; Orientation ; Patches (structures) ; Propagation ; Reconstruction ; Solvers ; Tasks ; Three dimensional models</subject><ispartof>Computer graphics forum, 2017-01, Vol.36 (1), p.197-208</ispartof><rights>2016 The Authors Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.</rights><rights>2017 The Eurographics Association and John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3655-d64cbc7497dd5b425208a8aa58355b4ce0a8d472c0e69b5fa5cd289017ffd6a23</citedby><cites>FETCH-LOGICAL-c3655-d64cbc7497dd5b425208a8aa58355b4ce0a8d472c0e69b5fa5cd289017ffd6a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Schertler, Nico</creatorcontrib><creatorcontrib>Savchynskyy, Bogdan</creatorcontrib><creatorcontrib>Gumhold, Stefan</creatorcontrib><title>Towards Globally Optimal Normal Orientations for Large Point Clouds</title><title>Computer graphics forum</title><description>Various processing algorithms on point set surfaces rely on consistently oriented normals (e.g. Poisson surface reconstruction). While several approaches exist for the calculation of normal directions, in most cases, their orientation has to be determined in a subsequent step. This paper generalizes propagation‐based approaches by reformulating the task as a graph‐based energy minimization problem. By applying global solvers, we can achieve more consistent orientations than simple greedy optimizations. Furthermore, we present a streaming‐based framework for orienting large point clouds. This framework orients patches locally and generates a globally consistent patch orientation on a reduced neighbour graph, which achieves similar quality to orienting the full graph.
Various processing algorithms on point set surfaces rely on consistently oriented normals (e.g. Poisson surface reconstruction).While several approaches exist for the calculation of normal directions, in most cases, their orientation has to be determined in a subsequent step. This paper generalizes propagation‐based approaches by reformulating the task as a graph‐based energy minimization problem and presents a streaming‐based out‐of‐core implementation.</description><subject>Algorithms</subject><subject>computational geometry</subject><subject>digital geometry processing</subject><subject>Energy conservation</subject><subject>Graphs</subject><subject>I.3.5 [Computer Graphics]: Computational Geometry and Object Modelling‐Geometric algorithms, languages and systems</subject><subject>Mathematical analysis</subject><subject>modelling</subject><subject>Optimization</subject><subject>Orientation</subject><subject>Patches (structures)</subject><subject>Propagation</subject><subject>Reconstruction</subject><subject>Solvers</subject><subject>Tasks</subject><subject>Three dimensional models</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsHv8GCFz1sm2zz9yiLrUKxHuo5ZJNs2ZJuarJL2W9v6noSnMubgd8Mbx4A9wjOUKq53tUzVDBBLsAEYcpyTom4BBOIUs8gIdfgJsY9hBAzSiag3PqTCiZmK-cr5dyQbY5dc1Aue_fhLJvQ2LZTXePbmNU-ZGsVdjb78E3bZaXzvYm34KpWLtq7X52Cz-XLtnzN15vVW_m8zvWCEpIbinWlGRbMGFLhghSQK64U4QuSZm2h4gazQkNLRUVqRbQpuICI1bWhqlhMweN49xj8V29jJw9N1NY51VrfR4k4xyidxTihD3_Qve9Dm9xJJCAVyZAQiXoaKR18jMHW8hjS72GQCMpznDLFKX_iTOx8ZE-Ns8P_oCxXy3HjG-NadVs</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Schertler, Nico</creator><creator>Savchynskyy, Bogdan</creator><creator>Gumhold, Stefan</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201701</creationdate><title>Towards Globally Optimal Normal Orientations for Large Point Clouds</title><author>Schertler, Nico ; Savchynskyy, Bogdan ; Gumhold, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3655-d64cbc7497dd5b425208a8aa58355b4ce0a8d472c0e69b5fa5cd289017ffd6a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>computational geometry</topic><topic>digital geometry processing</topic><topic>Energy conservation</topic><topic>Graphs</topic><topic>I.3.5 [Computer Graphics]: Computational Geometry and Object Modelling‐Geometric algorithms, languages and systems</topic><topic>Mathematical analysis</topic><topic>modelling</topic><topic>Optimization</topic><topic>Orientation</topic><topic>Patches (structures)</topic><topic>Propagation</topic><topic>Reconstruction</topic><topic>Solvers</topic><topic>Tasks</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schertler, Nico</creatorcontrib><creatorcontrib>Savchynskyy, Bogdan</creatorcontrib><creatorcontrib>Gumhold, Stefan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schertler, Nico</au><au>Savchynskyy, Bogdan</au><au>Gumhold, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Globally Optimal Normal Orientations for Large Point Clouds</atitle><jtitle>Computer graphics forum</jtitle><date>2017-01</date><risdate>2017</risdate><volume>36</volume><issue>1</issue><spage>197</spage><epage>208</epage><pages>197-208</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Various processing algorithms on point set surfaces rely on consistently oriented normals (e.g. Poisson surface reconstruction). While several approaches exist for the calculation of normal directions, in most cases, their orientation has to be determined in a subsequent step. This paper generalizes propagation‐based approaches by reformulating the task as a graph‐based energy minimization problem. By applying global solvers, we can achieve more consistent orientations than simple greedy optimizations. Furthermore, we present a streaming‐based framework for orienting large point clouds. This framework orients patches locally and generates a globally consistent patch orientation on a reduced neighbour graph, which achieves similar quality to orienting the full graph.
Various processing algorithms on point set surfaces rely on consistently oriented normals (e.g. Poisson surface reconstruction).While several approaches exist for the calculation of normal directions, in most cases, their orientation has to be determined in a subsequent step. This paper generalizes propagation‐based approaches by reformulating the task as a graph‐based energy minimization problem and presents a streaming‐based out‐of‐core implementation.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.12795</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7055 |
ispartof | Computer graphics forum, 2017-01, Vol.36 (1), p.197-208 |
issn | 0167-7055 1467-8659 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884125244 |
source | EBSCOhost Business Source Ultimate; EBSCOhost Art & Architecture Source; Wiley-Blackwell Read & Publish Collection |
subjects | Algorithms computational geometry digital geometry processing Energy conservation Graphs I.3.5 [Computer Graphics]: Computational Geometry and Object Modelling‐Geometric algorithms, languages and systems Mathematical analysis modelling Optimization Orientation Patches (structures) Propagation Reconstruction Solvers Tasks Three dimensional models |
title | Towards Globally Optimal Normal Orientations for Large Point Clouds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A50%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Globally%20Optimal%20Normal%20Orientations%20for%20Large%20Point%20Clouds&rft.jtitle=Computer%20graphics%20forum&rft.au=Schertler,%20Nico&rft.date=2017-01&rft.volume=36&rft.issue=1&rft.spage=197&rft.epage=208&rft.pages=197-208&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.12795&rft_dat=%3Cproquest_cross%3E1906936599%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3655-d64cbc7497dd5b425208a8aa58355b4ce0a8d472c0e69b5fa5cd289017ffd6a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1906936599&rft_id=info:pmid/&rfr_iscdi=true |