Loading…

An improved extremal optimization based on the distribution knowledge of candidate solutions

Extremal optimization (EO) is a phenomenon-mimicking algorithm inspired by the Bak-Sneppen model of self-organized criticality from the field of statistical physics. The canonical EO works on a single solution and only employs mutation operator, which is inclined to prematurely converge to local opt...

Full description

Saved in:
Bibliographic Details
Published in:Natural computing 2017-03, Vol.16 (1), p.135-149
Main Authors: Chen, Junfeng, Xie, Yingjuan, Chen, Hua, Yang, Qiwen, Cheng, Shi, Shi, Yuhui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c301t-dc66e6c7dec9ae83e684f342802dc85df364b76ad67604c8832cd895c96418f43
container_end_page 149
container_issue 1
container_start_page 135
container_title Natural computing
container_volume 16
creator Chen, Junfeng
Xie, Yingjuan
Chen, Hua
Yang, Qiwen
Cheng, Shi
Shi, Yuhui
description Extremal optimization (EO) is a phenomenon-mimicking algorithm inspired by the Bak-Sneppen model of self-organized criticality from the field of statistical physics. The canonical EO works on a single solution and only employs mutation operator, which is inclined to prematurely converge to local optima. In this paper, a population-based extremal optimization algorithm is developed to provide a parallel way for exploring the search space. In addition, a new mutation strategy named cloud mutation is proposed by analyzing the distribution knowledge of each component set in the solution set. The population-based extremal optimization with cloud mutation is characteristic of mining and recreating the uncertainty properties of candidate solutions in the search process. Finally, the proposed algorithm is applied to numerical optimization problems in comparison with other reported meta-heuristic algorithms. The statistical results show that the proposed algorithm can achieve a satisfactory optimization performance with regards to solution quality, successful rate, convergence speed, and computing robustness.
doi_str_mv 10.1007/s11047-016-9551-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884127062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884127062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-dc66e6c7dec9ae83e684f342802dc85df364b76ad67604c8832cd895c96418f43</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcFN26qSdom6XIYfMGAG90JIZPcjhnbZkxSX7_ezNSFCK7ugfOdy70HoVOCLwjG_DIQgkueY8LyuqpILvbQhFSc5jWv2f5WM55zQcQhOgphjTElCZugp1mf2W7j3RuYDD6ih061mdtE29kvFa3rs6UKyUsiPkNmbIjeLoed89K79xbMCjLXZFr1xhoVIQuu3fnhGB00qg1w8jOn6PH66mF-my_ub-7ms0WuC0xibjRjwDQ3oGsFogAmyqYoqcDUaFGZpmDlkjNlGGe41EIUVBtRV7pmJRFNWUzR-bg3_fE6QIiys0FD26oe3BAkEaIklGNGE3r2B127wffpukQxQQte7CgyUtq7EDw0cuNtp_ynJFhu-5Zj3zL1Lbd9S5EydMyExPYr8L82_xv6Bg0mg5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1868237362</pqid></control><display><type>article</type><title>An improved extremal optimization based on the distribution knowledge of candidate solutions</title><source>Springer Link</source><creator>Chen, Junfeng ; Xie, Yingjuan ; Chen, Hua ; Yang, Qiwen ; Cheng, Shi ; Shi, Yuhui</creator><creatorcontrib>Chen, Junfeng ; Xie, Yingjuan ; Chen, Hua ; Yang, Qiwen ; Cheng, Shi ; Shi, Yuhui</creatorcontrib><description>Extremal optimization (EO) is a phenomenon-mimicking algorithm inspired by the Bak-Sneppen model of self-organized criticality from the field of statistical physics. The canonical EO works on a single solution and only employs mutation operator, which is inclined to prematurely converge to local optima. In this paper, a population-based extremal optimization algorithm is developed to provide a parallel way for exploring the search space. In addition, a new mutation strategy named cloud mutation is proposed by analyzing the distribution knowledge of each component set in the solution set. The population-based extremal optimization with cloud mutation is characteristic of mining and recreating the uncertainty properties of candidate solutions in the search process. Finally, the proposed algorithm is applied to numerical optimization problems in comparison with other reported meta-heuristic algorithms. The statistical results show that the proposed algorithm can achieve a satisfactory optimization performance with regards to solution quality, successful rate, convergence speed, and computing robustness.</description><identifier>ISSN: 1567-7818</identifier><identifier>EISSN: 1572-9796</identifier><identifier>DOI: 10.1007/s11047-016-9551-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Artificial Intelligence ; Clouds ; Complex Systems ; Computation ; Computer Science ; Convergence ; Evolutionary Biology ; Mathematical models ; Mutations ; Optimization ; Optimization algorithms ; Processor Architectures ; Statistical analysis ; Strategy ; Theory of Computation</subject><ispartof>Natural computing, 2017-03, Vol.16 (1), p.135-149</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Natural Computing is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-dc66e6c7dec9ae83e684f342802dc85df364b76ad67604c8832cd895c96418f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Chen, Junfeng</creatorcontrib><creatorcontrib>Xie, Yingjuan</creatorcontrib><creatorcontrib>Chen, Hua</creatorcontrib><creatorcontrib>Yang, Qiwen</creatorcontrib><creatorcontrib>Cheng, Shi</creatorcontrib><creatorcontrib>Shi, Yuhui</creatorcontrib><title>An improved extremal optimization based on the distribution knowledge of candidate solutions</title><title>Natural computing</title><addtitle>Nat Comput</addtitle><description>Extremal optimization (EO) is a phenomenon-mimicking algorithm inspired by the Bak-Sneppen model of self-organized criticality from the field of statistical physics. The canonical EO works on a single solution and only employs mutation operator, which is inclined to prematurely converge to local optima. In this paper, a population-based extremal optimization algorithm is developed to provide a parallel way for exploring the search space. In addition, a new mutation strategy named cloud mutation is proposed by analyzing the distribution knowledge of each component set in the solution set. The population-based extremal optimization with cloud mutation is characteristic of mining and recreating the uncertainty properties of candidate solutions in the search process. Finally, the proposed algorithm is applied to numerical optimization problems in comparison with other reported meta-heuristic algorithms. The statistical results show that the proposed algorithm can achieve a satisfactory optimization performance with regards to solution quality, successful rate, convergence speed, and computing robustness.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Clouds</subject><subject>Complex Systems</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Evolutionary Biology</subject><subject>Mathematical models</subject><subject>Mutations</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Processor Architectures</subject><subject>Statistical analysis</subject><subject>Strategy</subject><subject>Theory of Computation</subject><issn>1567-7818</issn><issn>1572-9796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHcFN26qSdom6XIYfMGAG90JIZPcjhnbZkxSX7_ezNSFCK7ugfOdy70HoVOCLwjG_DIQgkueY8LyuqpILvbQhFSc5jWv2f5WM55zQcQhOgphjTElCZugp1mf2W7j3RuYDD6ih061mdtE29kvFa3rs6UKyUsiPkNmbIjeLoed89K79xbMCjLXZFr1xhoVIQuu3fnhGB00qg1w8jOn6PH66mF-my_ub-7ms0WuC0xibjRjwDQ3oGsFogAmyqYoqcDUaFGZpmDlkjNlGGe41EIUVBtRV7pmJRFNWUzR-bg3_fE6QIiys0FD26oe3BAkEaIklGNGE3r2B127wffpukQxQQte7CgyUtq7EDw0cuNtp_ynJFhu-5Zj3zL1Lbd9S5EydMyExPYr8L82_xv6Bg0mg5Q</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Chen, Junfeng</creator><creator>Xie, Yingjuan</creator><creator>Chen, Hua</creator><creator>Yang, Qiwen</creator><creator>Cheng, Shi</creator><creator>Shi, Yuhui</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20170301</creationdate><title>An improved extremal optimization based on the distribution knowledge of candidate solutions</title><author>Chen, Junfeng ; Xie, Yingjuan ; Chen, Hua ; Yang, Qiwen ; Cheng, Shi ; Shi, Yuhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-dc66e6c7dec9ae83e684f342802dc85df364b76ad67604c8832cd895c96418f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Clouds</topic><topic>Complex Systems</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Evolutionary Biology</topic><topic>Mathematical models</topic><topic>Mutations</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Processor Architectures</topic><topic>Statistical analysis</topic><topic>Strategy</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Junfeng</creatorcontrib><creatorcontrib>Xie, Yingjuan</creatorcontrib><creatorcontrib>Chen, Hua</creatorcontrib><creatorcontrib>Yang, Qiwen</creatorcontrib><creatorcontrib>Cheng, Shi</creatorcontrib><creatorcontrib>Shi, Yuhui</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Natural computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Junfeng</au><au>Xie, Yingjuan</au><au>Chen, Hua</au><au>Yang, Qiwen</au><au>Cheng, Shi</au><au>Shi, Yuhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved extremal optimization based on the distribution knowledge of candidate solutions</atitle><jtitle>Natural computing</jtitle><stitle>Nat Comput</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>16</volume><issue>1</issue><spage>135</spage><epage>149</epage><pages>135-149</pages><issn>1567-7818</issn><eissn>1572-9796</eissn><abstract>Extremal optimization (EO) is a phenomenon-mimicking algorithm inspired by the Bak-Sneppen model of self-organized criticality from the field of statistical physics. The canonical EO works on a single solution and only employs mutation operator, which is inclined to prematurely converge to local optima. In this paper, a population-based extremal optimization algorithm is developed to provide a parallel way for exploring the search space. In addition, a new mutation strategy named cloud mutation is proposed by analyzing the distribution knowledge of each component set in the solution set. The population-based extremal optimization with cloud mutation is characteristic of mining and recreating the uncertainty properties of candidate solutions in the search process. Finally, the proposed algorithm is applied to numerical optimization problems in comparison with other reported meta-heuristic algorithms. The statistical results show that the proposed algorithm can achieve a satisfactory optimization performance with regards to solution quality, successful rate, convergence speed, and computing robustness.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11047-016-9551-8</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1567-7818
ispartof Natural computing, 2017-03, Vol.16 (1), p.135-149
issn 1567-7818
1572-9796
language eng
recordid cdi_proquest_miscellaneous_1884127062
source Springer Link
subjects Algorithms
Artificial Intelligence
Clouds
Complex Systems
Computation
Computer Science
Convergence
Evolutionary Biology
Mathematical models
Mutations
Optimization
Optimization algorithms
Processor Architectures
Statistical analysis
Strategy
Theory of Computation
title An improved extremal optimization based on the distribution knowledge of candidate solutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20extremal%20optimization%20based%20on%20the%20distribution%20knowledge%20of%20candidate%20solutions&rft.jtitle=Natural%20computing&rft.au=Chen,%20Junfeng&rft.date=2017-03-01&rft.volume=16&rft.issue=1&rft.spage=135&rft.epage=149&rft.pages=135-149&rft.issn=1567-7818&rft.eissn=1572-9796&rft_id=info:doi/10.1007/s11047-016-9551-8&rft_dat=%3Cproquest_cross%3E1884127062%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301t-dc66e6c7dec9ae83e684f342802dc85df364b76ad67604c8832cd895c96418f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1868237362&rft_id=info:pmid/&rfr_iscdi=true