Loading…
An improved extremal optimization based on the distribution knowledge of candidate solutions
Extremal optimization (EO) is a phenomenon-mimicking algorithm inspired by the Bak-Sneppen model of self-organized criticality from the field of statistical physics. The canonical EO works on a single solution and only employs mutation operator, which is inclined to prematurely converge to local opt...
Saved in:
Published in: | Natural computing 2017-03, Vol.16 (1), p.135-149 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c301t-dc66e6c7dec9ae83e684f342802dc85df364b76ad67604c8832cd895c96418f43 |
container_end_page | 149 |
container_issue | 1 |
container_start_page | 135 |
container_title | Natural computing |
container_volume | 16 |
creator | Chen, Junfeng Xie, Yingjuan Chen, Hua Yang, Qiwen Cheng, Shi Shi, Yuhui |
description | Extremal optimization (EO) is a phenomenon-mimicking algorithm inspired by the Bak-Sneppen model of self-organized criticality from the field of statistical physics. The canonical EO works on a single solution and only employs mutation operator, which is inclined to prematurely converge to local optima. In this paper, a population-based extremal optimization algorithm is developed to provide a parallel way for exploring the search space. In addition, a new mutation strategy named cloud mutation is proposed by analyzing the distribution knowledge of each component set in the solution set. The population-based extremal optimization with cloud mutation is characteristic of mining and recreating the uncertainty properties of candidate solutions in the search process. Finally, the proposed algorithm is applied to numerical optimization problems in comparison with other reported meta-heuristic algorithms. The statistical results show that the proposed algorithm can achieve a satisfactory optimization performance with regards to solution quality, successful rate, convergence speed, and computing robustness. |
doi_str_mv | 10.1007/s11047-016-9551-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884127062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884127062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-dc66e6c7dec9ae83e684f342802dc85df364b76ad67604c8832cd895c96418f43</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcFN26qSdom6XIYfMGAG90JIZPcjhnbZkxSX7_ezNSFCK7ugfOdy70HoVOCLwjG_DIQgkueY8LyuqpILvbQhFSc5jWv2f5WM55zQcQhOgphjTElCZugp1mf2W7j3RuYDD6ih061mdtE29kvFa3rs6UKyUsiPkNmbIjeLoed89K79xbMCjLXZFr1xhoVIQuu3fnhGB00qg1w8jOn6PH66mF-my_ub-7ms0WuC0xibjRjwDQ3oGsFogAmyqYoqcDUaFGZpmDlkjNlGGe41EIUVBtRV7pmJRFNWUzR-bg3_fE6QIiys0FD26oe3BAkEaIklGNGE3r2B127wffpukQxQQte7CgyUtq7EDw0cuNtp_ynJFhu-5Zj3zL1Lbd9S5EydMyExPYr8L82_xv6Bg0mg5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1868237362</pqid></control><display><type>article</type><title>An improved extremal optimization based on the distribution knowledge of candidate solutions</title><source>Springer Link</source><creator>Chen, Junfeng ; Xie, Yingjuan ; Chen, Hua ; Yang, Qiwen ; Cheng, Shi ; Shi, Yuhui</creator><creatorcontrib>Chen, Junfeng ; Xie, Yingjuan ; Chen, Hua ; Yang, Qiwen ; Cheng, Shi ; Shi, Yuhui</creatorcontrib><description>Extremal optimization (EO) is a phenomenon-mimicking algorithm inspired by the Bak-Sneppen model of self-organized criticality from the field of statistical physics. The canonical EO works on a single solution and only employs mutation operator, which is inclined to prematurely converge to local optima. In this paper, a population-based extremal optimization algorithm is developed to provide a parallel way for exploring the search space. In addition, a new mutation strategy named cloud mutation is proposed by analyzing the distribution knowledge of each component set in the solution set. The population-based extremal optimization with cloud mutation is characteristic of mining and recreating the uncertainty properties of candidate solutions in the search process. Finally, the proposed algorithm is applied to numerical optimization problems in comparison with other reported meta-heuristic algorithms. The statistical results show that the proposed algorithm can achieve a satisfactory optimization performance with regards to solution quality, successful rate, convergence speed, and computing robustness.</description><identifier>ISSN: 1567-7818</identifier><identifier>EISSN: 1572-9796</identifier><identifier>DOI: 10.1007/s11047-016-9551-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Artificial Intelligence ; Clouds ; Complex Systems ; Computation ; Computer Science ; Convergence ; Evolutionary Biology ; Mathematical models ; Mutations ; Optimization ; Optimization algorithms ; Processor Architectures ; Statistical analysis ; Strategy ; Theory of Computation</subject><ispartof>Natural computing, 2017-03, Vol.16 (1), p.135-149</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Natural Computing is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-dc66e6c7dec9ae83e684f342802dc85df364b76ad67604c8832cd895c96418f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Chen, Junfeng</creatorcontrib><creatorcontrib>Xie, Yingjuan</creatorcontrib><creatorcontrib>Chen, Hua</creatorcontrib><creatorcontrib>Yang, Qiwen</creatorcontrib><creatorcontrib>Cheng, Shi</creatorcontrib><creatorcontrib>Shi, Yuhui</creatorcontrib><title>An improved extremal optimization based on the distribution knowledge of candidate solutions</title><title>Natural computing</title><addtitle>Nat Comput</addtitle><description>Extremal optimization (EO) is a phenomenon-mimicking algorithm inspired by the Bak-Sneppen model of self-organized criticality from the field of statistical physics. The canonical EO works on a single solution and only employs mutation operator, which is inclined to prematurely converge to local optima. In this paper, a population-based extremal optimization algorithm is developed to provide a parallel way for exploring the search space. In addition, a new mutation strategy named cloud mutation is proposed by analyzing the distribution knowledge of each component set in the solution set. The population-based extremal optimization with cloud mutation is characteristic of mining and recreating the uncertainty properties of candidate solutions in the search process. Finally, the proposed algorithm is applied to numerical optimization problems in comparison with other reported meta-heuristic algorithms. The statistical results show that the proposed algorithm can achieve a satisfactory optimization performance with regards to solution quality, successful rate, convergence speed, and computing robustness.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Clouds</subject><subject>Complex Systems</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Evolutionary Biology</subject><subject>Mathematical models</subject><subject>Mutations</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Processor Architectures</subject><subject>Statistical analysis</subject><subject>Strategy</subject><subject>Theory of Computation</subject><issn>1567-7818</issn><issn>1572-9796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHcFN26qSdom6XIYfMGAG90JIZPcjhnbZkxSX7_ezNSFCK7ugfOdy70HoVOCLwjG_DIQgkueY8LyuqpILvbQhFSc5jWv2f5WM55zQcQhOgphjTElCZugp1mf2W7j3RuYDD6ih061mdtE29kvFa3rs6UKyUsiPkNmbIjeLoed89K79xbMCjLXZFr1xhoVIQuu3fnhGB00qg1w8jOn6PH66mF-my_ub-7ms0WuC0xibjRjwDQ3oGsFogAmyqYoqcDUaFGZpmDlkjNlGGe41EIUVBtRV7pmJRFNWUzR-bg3_fE6QIiys0FD26oe3BAkEaIklGNGE3r2B127wffpukQxQQte7CgyUtq7EDw0cuNtp_ynJFhu-5Zj3zL1Lbd9S5EydMyExPYr8L82_xv6Bg0mg5Q</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Chen, Junfeng</creator><creator>Xie, Yingjuan</creator><creator>Chen, Hua</creator><creator>Yang, Qiwen</creator><creator>Cheng, Shi</creator><creator>Shi, Yuhui</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20170301</creationdate><title>An improved extremal optimization based on the distribution knowledge of candidate solutions</title><author>Chen, Junfeng ; Xie, Yingjuan ; Chen, Hua ; Yang, Qiwen ; Cheng, Shi ; Shi, Yuhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-dc66e6c7dec9ae83e684f342802dc85df364b76ad67604c8832cd895c96418f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Clouds</topic><topic>Complex Systems</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Evolutionary Biology</topic><topic>Mathematical models</topic><topic>Mutations</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Processor Architectures</topic><topic>Statistical analysis</topic><topic>Strategy</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Junfeng</creatorcontrib><creatorcontrib>Xie, Yingjuan</creatorcontrib><creatorcontrib>Chen, Hua</creatorcontrib><creatorcontrib>Yang, Qiwen</creatorcontrib><creatorcontrib>Cheng, Shi</creatorcontrib><creatorcontrib>Shi, Yuhui</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Natural computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Junfeng</au><au>Xie, Yingjuan</au><au>Chen, Hua</au><au>Yang, Qiwen</au><au>Cheng, Shi</au><au>Shi, Yuhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved extremal optimization based on the distribution knowledge of candidate solutions</atitle><jtitle>Natural computing</jtitle><stitle>Nat Comput</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>16</volume><issue>1</issue><spage>135</spage><epage>149</epage><pages>135-149</pages><issn>1567-7818</issn><eissn>1572-9796</eissn><abstract>Extremal optimization (EO) is a phenomenon-mimicking algorithm inspired by the Bak-Sneppen model of self-organized criticality from the field of statistical physics. The canonical EO works on a single solution and only employs mutation operator, which is inclined to prematurely converge to local optima. In this paper, a population-based extremal optimization algorithm is developed to provide a parallel way for exploring the search space. In addition, a new mutation strategy named cloud mutation is proposed by analyzing the distribution knowledge of each component set in the solution set. The population-based extremal optimization with cloud mutation is characteristic of mining and recreating the uncertainty properties of candidate solutions in the search process. Finally, the proposed algorithm is applied to numerical optimization problems in comparison with other reported meta-heuristic algorithms. The statistical results show that the proposed algorithm can achieve a satisfactory optimization performance with regards to solution quality, successful rate, convergence speed, and computing robustness.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11047-016-9551-8</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1567-7818 |
ispartof | Natural computing, 2017-03, Vol.16 (1), p.135-149 |
issn | 1567-7818 1572-9796 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884127062 |
source | Springer Link |
subjects | Algorithms Artificial Intelligence Clouds Complex Systems Computation Computer Science Convergence Evolutionary Biology Mathematical models Mutations Optimization Optimization algorithms Processor Architectures Statistical analysis Strategy Theory of Computation |
title | An improved extremal optimization based on the distribution knowledge of candidate solutions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20extremal%20optimization%20based%20on%20the%20distribution%20knowledge%20of%20candidate%20solutions&rft.jtitle=Natural%20computing&rft.au=Chen,%20Junfeng&rft.date=2017-03-01&rft.volume=16&rft.issue=1&rft.spage=135&rft.epage=149&rft.pages=135-149&rft.issn=1567-7818&rft.eissn=1572-9796&rft_id=info:doi/10.1007/s11047-016-9551-8&rft_dat=%3Cproquest_cross%3E1884127062%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301t-dc66e6c7dec9ae83e684f342802dc85df364b76ad67604c8832cd895c96418f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1868237362&rft_id=info:pmid/&rfr_iscdi=true |