Loading…

Tailoring mesoporous-silica nanoparticles for robust immobilization of lipase and biocatalysis

The rational design of nano-carriers is critical for modem enzyme immobilization for advanced biocatalysis. Herein, we report the synthesis of octadecylalkyl- modified mesoporous-silica nanoparticles (C18-MSNs) with a high C18 content (-19 wt.%) and tunable pore sizes (1.6--13 nm). It is demonstrate...

Full description

Saved in:
Bibliographic Details
Published in:Nano research 2017-02, Vol.10 (2), p.605-617
Main Authors: Kalantari, Mohammad, Yu, Meihua, Yang, Yannan, Strounina, Ekaterina, Gu, Zhengying, Huang, Xiaodan, Zhang, Jun, Song, Hao, Yu, Chengzhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-90c9fcc947259a5b32972e41685db2a07d7b77158ff096e5b726c6e229fee3533
cites cdi_FETCH-LOGICAL-c409t-90c9fcc947259a5b32972e41685db2a07d7b77158ff096e5b726c6e229fee3533
container_end_page 617
container_issue 2
container_start_page 605
container_title Nano research
container_volume 10
creator Kalantari, Mohammad
Yu, Meihua
Yang, Yannan
Strounina, Ekaterina
Gu, Zhengying
Huang, Xiaodan
Zhang, Jun
Song, Hao
Yu, Chengzhong
description The rational design of nano-carriers is critical for modem enzyme immobilization for advanced biocatalysis. Herein, we report the synthesis of octadecylalkyl- modified mesoporous-silica nanoparticles (C18-MSNs) with a high C18 content (-19 wt.%) and tunable pore sizes (1.6--13 nm). It is demonstrated that the increased hydrophobic content and a tailored pore size (slightly larger than the size of lipase) are responsible for the high performance of immobilized lipase. The optimized C18-MSNs exhibit a loading capacity of 711 mg/g and a specific activity 5.23 times higher than that of the free enzyme. Additionally, 93% of the initial activity is retained after reuse five times, which is better than the best performance reported to date. Our findings pave the way for the robust immobilization of lipase for biocatalytic applications.
doi_str_mv 10.1007/s12274-016-1320-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884128103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>671551918</cqvip_id><sourcerecordid>1868302464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-90c9fcc947259a5b32972e41685db2a07d7b77158ff096e5b726c6e229fee3533</originalsourceid><addsrcrecordid>eNqNkU9P3DAQxSMEUinwAXqz6KWXtDOO4z_HCpUWCamX5YrleJ3FKImDJ3ugnx6vdilSDxVzmTn83ozevKr6hPAVAdQ3Qs6VqAFljQ2HWh5Vp2iMrqHU8euMXHyoPhI9AkiOQp9W9ysXh5TjtGFjoDSnnLZUUxyid2xyU5pdXqIfArE-ZZZTt6WFxXFMXWH-uCWmiaWeDXF2FJib1qyLybvFDc8U6bw66d1A4eLQz6q76x-rq1_17e-fN1ffb2svwCy1AW96741QvDWu7RpuFA8CpW7XHXeg1qpTClvd92BkaDvFpZeBc9OH0LRNc1Z92e-dc3raBlrsGMmHYXBTKIYsai2Qa4T3oFI3wIUUBf38D_qYtnkqRiwHQKE0qrZQuKd8TkQ59HbOcXT52SLYXTh2H44t4dhdOFYWDd9raN79PuS3zf8TXR4OPaRp81R0fy_J8pwWDermBSJ2nS4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001478175</pqid></control><display><type>article</type><title>Tailoring mesoporous-silica nanoparticles for robust immobilization of lipase and biocatalysis</title><source>Springer Link</source><creator>Kalantari, Mohammad ; Yu, Meihua ; Yang, Yannan ; Strounina, Ekaterina ; Gu, Zhengying ; Huang, Xiaodan ; Zhang, Jun ; Song, Hao ; Yu, Chengzhong</creator><creatorcontrib>Kalantari, Mohammad ; Yu, Meihua ; Yang, Yannan ; Strounina, Ekaterina ; Gu, Zhengying ; Huang, Xiaodan ; Zhang, Jun ; Song, Hao ; Yu, Chengzhong</creatorcontrib><description>The rational design of nano-carriers is critical for modem enzyme immobilization for advanced biocatalysis. Herein, we report the synthesis of octadecylalkyl- modified mesoporous-silica nanoparticles (C18-MSNs) with a high C18 content (-19 wt.%) and tunable pore sizes (1.6--13 nm). It is demonstrated that the increased hydrophobic content and a tailored pore size (slightly larger than the size of lipase) are responsible for the high performance of immobilized lipase. The optimized C18-MSNs exhibit a loading capacity of 711 mg/g and a specific activity 5.23 times higher than that of the free enzyme. Additionally, 93% of the initial activity is retained after reuse five times, which is better than the best performance reported to date. Our findings pave the way for the robust immobilization of lipase for biocatalytic applications.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-016-1320-6</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Catalysis ; Chemistry and Materials Science ; Condensed Matter Physics ; Enzymes ; Hydrophobicity ; Immobilization ; Lipase ; Materials Science ; Nanoparticles ; Nanostructure ; Nanotechnology ; Pore size ; Porosity ; Research Article ; Robustness ; Silica ; Silicon dioxide</subject><ispartof>Nano research, 2017-02, Vol.10 (2), p.605-617</ispartof><rights>Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Nano Research is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-90c9fcc947259a5b32972e41685db2a07d7b77158ff096e5b726c6e229fee3533</citedby><cites>FETCH-LOGICAL-c409t-90c9fcc947259a5b32972e41685db2a07d7b77158ff096e5b726c6e229fee3533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kalantari, Mohammad</creatorcontrib><creatorcontrib>Yu, Meihua</creatorcontrib><creatorcontrib>Yang, Yannan</creatorcontrib><creatorcontrib>Strounina, Ekaterina</creatorcontrib><creatorcontrib>Gu, Zhengying</creatorcontrib><creatorcontrib>Huang, Xiaodan</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Song, Hao</creatorcontrib><creatorcontrib>Yu, Chengzhong</creatorcontrib><title>Tailoring mesoporous-silica nanoparticles for robust immobilization of lipase and biocatalysis</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>The rational design of nano-carriers is critical for modem enzyme immobilization for advanced biocatalysis. Herein, we report the synthesis of octadecylalkyl- modified mesoporous-silica nanoparticles (C18-MSNs) with a high C18 content (-19 wt.%) and tunable pore sizes (1.6--13 nm). It is demonstrated that the increased hydrophobic content and a tailored pore size (slightly larger than the size of lipase) are responsible for the high performance of immobilized lipase. The optimized C18-MSNs exhibit a loading capacity of 711 mg/g and a specific activity 5.23 times higher than that of the free enzyme. Additionally, 93% of the initial activity is retained after reuse five times, which is better than the best performance reported to date. Our findings pave the way for the robust immobilization of lipase for biocatalytic applications.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Enzymes</subject><subject>Hydrophobicity</subject><subject>Immobilization</subject><subject>Lipase</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Research Article</subject><subject>Robustness</subject><subject>Silica</subject><subject>Silicon dioxide</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkU9P3DAQxSMEUinwAXqz6KWXtDOO4z_HCpUWCamX5YrleJ3FKImDJ3ugnx6vdilSDxVzmTn83ozevKr6hPAVAdQ3Qs6VqAFljQ2HWh5Vp2iMrqHU8euMXHyoPhI9AkiOQp9W9ysXh5TjtGFjoDSnnLZUUxyid2xyU5pdXqIfArE-ZZZTt6WFxXFMXWH-uCWmiaWeDXF2FJib1qyLybvFDc8U6bw66d1A4eLQz6q76x-rq1_17e-fN1ffb2svwCy1AW96741QvDWu7RpuFA8CpW7XHXeg1qpTClvd92BkaDvFpZeBc9OH0LRNc1Z92e-dc3raBlrsGMmHYXBTKIYsai2Qa4T3oFI3wIUUBf38D_qYtnkqRiwHQKE0qrZQuKd8TkQ59HbOcXT52SLYXTh2H44t4dhdOFYWDd9raN79PuS3zf8TXR4OPaRp81R0fy_J8pwWDermBSJ2nS4</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Kalantari, Mohammad</creator><creator>Yu, Meihua</creator><creator>Yang, Yannan</creator><creator>Strounina, Ekaterina</creator><creator>Gu, Zhengying</creator><creator>Huang, Xiaodan</creator><creator>Zhang, Jun</creator><creator>Song, Hao</creator><creator>Yu, Chengzhong</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170201</creationdate><title>Tailoring mesoporous-silica nanoparticles for robust immobilization of lipase and biocatalysis</title><author>Kalantari, Mohammad ; Yu, Meihua ; Yang, Yannan ; Strounina, Ekaterina ; Gu, Zhengying ; Huang, Xiaodan ; Zhang, Jun ; Song, Hao ; Yu, Chengzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-90c9fcc947259a5b32972e41685db2a07d7b77158ff096e5b726c6e229fee3533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Enzymes</topic><topic>Hydrophobicity</topic><topic>Immobilization</topic><topic>Lipase</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Research Article</topic><topic>Robustness</topic><topic>Silica</topic><topic>Silicon dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalantari, Mohammad</creatorcontrib><creatorcontrib>Yu, Meihua</creatorcontrib><creatorcontrib>Yang, Yannan</creatorcontrib><creatorcontrib>Strounina, Ekaterina</creatorcontrib><creatorcontrib>Gu, Zhengying</creatorcontrib><creatorcontrib>Huang, Xiaodan</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Song, Hao</creatorcontrib><creatorcontrib>Yu, Chengzhong</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalantari, Mohammad</au><au>Yu, Meihua</au><au>Yang, Yannan</au><au>Strounina, Ekaterina</au><au>Gu, Zhengying</au><au>Huang, Xiaodan</au><au>Zhang, Jun</au><au>Song, Hao</au><au>Yu, Chengzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring mesoporous-silica nanoparticles for robust immobilization of lipase and biocatalysis</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>10</volume><issue>2</issue><spage>605</spage><epage>617</epage><pages>605-617</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>The rational design of nano-carriers is critical for modem enzyme immobilization for advanced biocatalysis. Herein, we report the synthesis of octadecylalkyl- modified mesoporous-silica nanoparticles (C18-MSNs) with a high C18 content (-19 wt.%) and tunable pore sizes (1.6--13 nm). It is demonstrated that the increased hydrophobic content and a tailored pore size (slightly larger than the size of lipase) are responsible for the high performance of immobilized lipase. The optimized C18-MSNs exhibit a loading capacity of 711 mg/g and a specific activity 5.23 times higher than that of the free enzyme. Additionally, 93% of the initial activity is retained after reuse five times, which is better than the best performance reported to date. Our findings pave the way for the robust immobilization of lipase for biocatalytic applications.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-016-1320-6</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2017-02, Vol.10 (2), p.605-617
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_miscellaneous_1884128103
source Springer Link
subjects Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Catalysis
Chemistry and Materials Science
Condensed Matter Physics
Enzymes
Hydrophobicity
Immobilization
Lipase
Materials Science
Nanoparticles
Nanostructure
Nanotechnology
Pore size
Porosity
Research Article
Robustness
Silica
Silicon dioxide
title Tailoring mesoporous-silica nanoparticles for robust immobilization of lipase and biocatalysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20mesoporous-silica%20nanoparticles%20for%20robust%20immobilization%20of%20lipase%20and%20biocatalysis&rft.jtitle=Nano%20research&rft.au=Kalantari,%20Mohammad&rft.date=2017-02-01&rft.volume=10&rft.issue=2&rft.spage=605&rft.epage=617&rft.pages=605-617&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-016-1320-6&rft_dat=%3Cproquest_cross%3E1868302464%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-90c9fcc947259a5b32972e41685db2a07d7b77158ff096e5b726c6e229fee3533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2001478175&rft_id=info:pmid/&rft_cqvip_id=671551918&rfr_iscdi=true