Loading…
The global attractor for a suspension bridge with memory and partially hinged boundary conditions
Recently, Ferrero and Gazzola, [Disc. Cont. Dyn. Syst. 35: 5879–5908 (2015)], suggested and investigated a rectangular plate model describing the statics and dynamics of a suspension bridge. The plate is assumed to be hinged on its vertical edges and free on its remaining horizontal edges. This reli...
Saved in:
Published in: | Zeitschrift für angewandte Mathematik und Mechanik 2017-02, Vol.97 (2), p.159-172 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3504-106566aee41958cd5d230ff2ef6b8e8f072133311aa23698589d2075af03c6013 |
---|---|
cites | cdi_FETCH-LOGICAL-c3504-106566aee41958cd5d230ff2ef6b8e8f072133311aa23698589d2075af03c6013 |
container_end_page | 172 |
container_issue | 2 |
container_start_page | 159 |
container_title | Zeitschrift für angewandte Mathematik und Mechanik |
container_volume | 97 |
creator | Messaoudi, Salim A. Bonfoh, Ahmed Mukiawa, Soh E. Enyi, Cyril D. |
description | Recently, Ferrero and Gazzola, [Disc. Cont. Dyn. Syst. 35: 5879–5908 (2015)], suggested and investigated a rectangular plate model describing the statics and dynamics of a suspension bridge. The plate is assumed to be hinged on its vertical edges and free on its remaining horizontal edges. This reliable model aims to describe more accurately the motion of suspension bridges compared to all previous known models. In the present paper, we consider a plate equation in the presence of memory and subject to the above‐mentioned boundary conditions. We give a rigorous well‐posedness result and establish the existence of a global attractor.
Recently, Ferrero and Gazzola, [Disc. Cont. Dyn. Syst. 35: 5879–5908 (2015)], suggested and investigated a rectangular plate model describing the statics and dynamics of a suspension bridge. The plate is assumed to be hinged on its vertical edges and free on its remaining horizontal edges. This reliable model aims to describe more accurately the motion of suspension bridges compared to all previous known models. The authors consider a plate equation in the presence of memory and subject to the above‐mentioned boundary conditions. They give a rigorous well‐posedness result and establish the existence of a global attractor. |
doi_str_mv | 10.1002/zamm.201600034 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884132143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884132143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3504-106566aee41958cd5d230ff2ef6b8e8f072133311aa23698589d2075af03c6013</originalsourceid><addsrcrecordid>eNqFkD1rwzAQhkVpoenH2lnQpYvTO8lS7DGEfkFCl3TpYmRbThRkK5VsQvrrq5DSQpcOxw33PMfdS8gNwhgB2P2natsxA5QAwNMTMkLBMEkB8JSMANI0YUxOzslFCJuIYI58RNRyrenKulJZqvreq6p3njaxFA1D2OouGNfR0pt6penO9Gva6tb5PVVdTbfK90ZZu6dr0610TUs3dLWK08p1temjGq7IWaNs0Nff_ZK8PT4sZ8_J_PXpZTadJxUXkCYIUkiptE4xF1lVi5pxaBqmG1lmOmtgwpBzjqgU4zLPRJbXDCZCNcArCcgvyd1x79a7j0GHvmhNqLS1qtNuCAVmWYqcYcojevsH3bjBd_G6SEkupADIIjU-UpV3IXjdFFtv2vhcgVAcEi8OiRc_iUchPwo7Y_X-H7p4ny4Wv-4XSraEmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1863565008</pqid></control><display><type>article</type><title>The global attractor for a suspension bridge with memory and partially hinged boundary conditions</title><source>Wiley</source><creator>Messaoudi, Salim A. ; Bonfoh, Ahmed ; Mukiawa, Soh E. ; Enyi, Cyril D.</creator><creatorcontrib>Messaoudi, Salim A. ; Bonfoh, Ahmed ; Mukiawa, Soh E. ; Enyi, Cyril D.</creatorcontrib><description>Recently, Ferrero and Gazzola, [Disc. Cont. Dyn. Syst. 35: 5879–5908 (2015)], suggested and investigated a rectangular plate model describing the statics and dynamics of a suspension bridge. The plate is assumed to be hinged on its vertical edges and free on its remaining horizontal edges. This reliable model aims to describe more accurately the motion of suspension bridges compared to all previous known models. In the present paper, we consider a plate equation in the presence of memory and subject to the above‐mentioned boundary conditions. We give a rigorous well‐posedness result and establish the existence of a global attractor.
Recently, Ferrero and Gazzola, [Disc. Cont. Dyn. Syst. 35: 5879–5908 (2015)], suggested and investigated a rectangular plate model describing the statics and dynamics of a suspension bridge. The plate is assumed to be hinged on its vertical edges and free on its remaining horizontal edges. This reliable model aims to describe more accurately the motion of suspension bridges compared to all previous known models. The authors consider a plate equation in the presence of memory and subject to the above‐mentioned boundary conditions. They give a rigorous well‐posedness result and establish the existence of a global attractor.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.201600034</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Boundary conditions ; Disks ; Dynamic tests ; Dynamics ; global attractor ; infinite memory ; Mathematical analysis ; Mathematical models ; Rectangular plates ; Suspension bridge ; Suspension bridges ; well‐posedness</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2017-02, Vol.97 (2), p.159-172</ispartof><rights>2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3504-106566aee41958cd5d230ff2ef6b8e8f072133311aa23698589d2075af03c6013</citedby><cites>FETCH-LOGICAL-c3504-106566aee41958cd5d230ff2ef6b8e8f072133311aa23698589d2075af03c6013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Messaoudi, Salim A.</creatorcontrib><creatorcontrib>Bonfoh, Ahmed</creatorcontrib><creatorcontrib>Mukiawa, Soh E.</creatorcontrib><creatorcontrib>Enyi, Cyril D.</creatorcontrib><title>The global attractor for a suspension bridge with memory and partially hinged boundary conditions</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><description>Recently, Ferrero and Gazzola, [Disc. Cont. Dyn. Syst. 35: 5879–5908 (2015)], suggested and investigated a rectangular plate model describing the statics and dynamics of a suspension bridge. The plate is assumed to be hinged on its vertical edges and free on its remaining horizontal edges. This reliable model aims to describe more accurately the motion of suspension bridges compared to all previous known models. In the present paper, we consider a plate equation in the presence of memory and subject to the above‐mentioned boundary conditions. We give a rigorous well‐posedness result and establish the existence of a global attractor.
Recently, Ferrero and Gazzola, [Disc. Cont. Dyn. Syst. 35: 5879–5908 (2015)], suggested and investigated a rectangular plate model describing the statics and dynamics of a suspension bridge. The plate is assumed to be hinged on its vertical edges and free on its remaining horizontal edges. This reliable model aims to describe more accurately the motion of suspension bridges compared to all previous known models. The authors consider a plate equation in the presence of memory and subject to the above‐mentioned boundary conditions. They give a rigorous well‐posedness result and establish the existence of a global attractor.</description><subject>Boundary conditions</subject><subject>Disks</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>global attractor</subject><subject>infinite memory</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Rectangular plates</subject><subject>Suspension bridge</subject><subject>Suspension bridges</subject><subject>well‐posedness</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkD1rwzAQhkVpoenH2lnQpYvTO8lS7DGEfkFCl3TpYmRbThRkK5VsQvrrq5DSQpcOxw33PMfdS8gNwhgB2P2natsxA5QAwNMTMkLBMEkB8JSMANI0YUxOzslFCJuIYI58RNRyrenKulJZqvreq6p3njaxFA1D2OouGNfR0pt6penO9Gva6tb5PVVdTbfK90ZZu6dr0610TUs3dLWK08p1temjGq7IWaNs0Nff_ZK8PT4sZ8_J_PXpZTadJxUXkCYIUkiptE4xF1lVi5pxaBqmG1lmOmtgwpBzjqgU4zLPRJbXDCZCNcArCcgvyd1x79a7j0GHvmhNqLS1qtNuCAVmWYqcYcojevsH3bjBd_G6SEkupADIIjU-UpV3IXjdFFtv2vhcgVAcEi8OiRc_iUchPwo7Y_X-H7p4ny4Wv-4XSraEmA</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Messaoudi, Salim A.</creator><creator>Bonfoh, Ahmed</creator><creator>Mukiawa, Soh E.</creator><creator>Enyi, Cyril D.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201702</creationdate><title>The global attractor for a suspension bridge with memory and partially hinged boundary conditions</title><author>Messaoudi, Salim A. ; Bonfoh, Ahmed ; Mukiawa, Soh E. ; Enyi, Cyril D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3504-106566aee41958cd5d230ff2ef6b8e8f072133311aa23698589d2075af03c6013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary conditions</topic><topic>Disks</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>global attractor</topic><topic>infinite memory</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Rectangular plates</topic><topic>Suspension bridge</topic><topic>Suspension bridges</topic><topic>well‐posedness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Messaoudi, Salim A.</creatorcontrib><creatorcontrib>Bonfoh, Ahmed</creatorcontrib><creatorcontrib>Mukiawa, Soh E.</creatorcontrib><creatorcontrib>Enyi, Cyril D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Messaoudi, Salim A.</au><au>Bonfoh, Ahmed</au><au>Mukiawa, Soh E.</au><au>Enyi, Cyril D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The global attractor for a suspension bridge with memory and partially hinged boundary conditions</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><date>2017-02</date><risdate>2017</risdate><volume>97</volume><issue>2</issue><spage>159</spage><epage>172</epage><pages>159-172</pages><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>Recently, Ferrero and Gazzola, [Disc. Cont. Dyn. Syst. 35: 5879–5908 (2015)], suggested and investigated a rectangular plate model describing the statics and dynamics of a suspension bridge. The plate is assumed to be hinged on its vertical edges and free on its remaining horizontal edges. This reliable model aims to describe more accurately the motion of suspension bridges compared to all previous known models. In the present paper, we consider a plate equation in the presence of memory and subject to the above‐mentioned boundary conditions. We give a rigorous well‐posedness result and establish the existence of a global attractor.
Recently, Ferrero and Gazzola, [Disc. Cont. Dyn. Syst. 35: 5879–5908 (2015)], suggested and investigated a rectangular plate model describing the statics and dynamics of a suspension bridge. The plate is assumed to be hinged on its vertical edges and free on its remaining horizontal edges. This reliable model aims to describe more accurately the motion of suspension bridges compared to all previous known models. The authors consider a plate equation in the presence of memory and subject to the above‐mentioned boundary conditions. They give a rigorous well‐posedness result and establish the existence of a global attractor.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/zamm.201600034</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2267 |
ispartof | Zeitschrift für angewandte Mathematik und Mechanik, 2017-02, Vol.97 (2), p.159-172 |
issn | 0044-2267 1521-4001 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884132143 |
source | Wiley |
subjects | Boundary conditions Disks Dynamic tests Dynamics global attractor infinite memory Mathematical analysis Mathematical models Rectangular plates Suspension bridge Suspension bridges well‐posedness |
title | The global attractor for a suspension bridge with memory and partially hinged boundary conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A15%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20global%20attractor%20for%20a%20suspension%20bridge%20with%20memory%20and%20partially%20hinged%20boundary%20conditions&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Messaoudi,%20Salim%20A.&rft.date=2017-02&rft.volume=97&rft.issue=2&rft.spage=159&rft.epage=172&rft.pages=159-172&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.201600034&rft_dat=%3Cproquest_cross%3E1884132143%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3504-106566aee41958cd5d230ff2ef6b8e8f072133311aa23698589d2075af03c6013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1863565008&rft_id=info:pmid/&rfr_iscdi=true |