Loading…

The global attractor for a suspension bridge with memory and partially hinged boundary conditions

Recently, Ferrero and Gazzola, [Disc. Cont. Dyn. Syst. 35: 5879–5908 (2015)], suggested and investigated a rectangular plate model describing the statics and dynamics of a suspension bridge. The plate is assumed to be hinged on its vertical edges and free on its remaining horizontal edges. This reli...

Full description

Saved in:
Bibliographic Details
Published in:Zeitschrift für angewandte Mathematik und Mechanik 2017-02, Vol.97 (2), p.159-172
Main Authors: Messaoudi, Salim A., Bonfoh, Ahmed, Mukiawa, Soh E., Enyi, Cyril D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3504-106566aee41958cd5d230ff2ef6b8e8f072133311aa23698589d2075af03c6013
cites cdi_FETCH-LOGICAL-c3504-106566aee41958cd5d230ff2ef6b8e8f072133311aa23698589d2075af03c6013
container_end_page 172
container_issue 2
container_start_page 159
container_title Zeitschrift für angewandte Mathematik und Mechanik
container_volume 97
creator Messaoudi, Salim A.
Bonfoh, Ahmed
Mukiawa, Soh E.
Enyi, Cyril D.
description Recently, Ferrero and Gazzola, [Disc. Cont. Dyn. Syst. 35: 5879–5908 (2015)], suggested and investigated a rectangular plate model describing the statics and dynamics of a suspension bridge. The plate is assumed to be hinged on its vertical edges and free on its remaining horizontal edges. This reliable model aims to describe more accurately the motion of suspension bridges compared to all previous known models. In the present paper, we consider a plate equation in the presence of memory and subject to the above‐mentioned boundary conditions. We give a rigorous well‐posedness result and establish the existence of a global attractor. Recently, Ferrero and Gazzola, [Disc. Cont. Dyn. Syst. 35: 5879–5908 (2015)], suggested and investigated a rectangular plate model describing the statics and dynamics of a suspension bridge. The plate is assumed to be hinged on its vertical edges and free on its remaining horizontal edges. This reliable model aims to describe more accurately the motion of suspension bridges compared to all previous known models. The authors consider a plate equation in the presence of memory and subject to the above‐mentioned boundary conditions. They give a rigorous well‐posedness result and establish the existence of a global attractor.
doi_str_mv 10.1002/zamm.201600034
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884132143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884132143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3504-106566aee41958cd5d230ff2ef6b8e8f072133311aa23698589d2075af03c6013</originalsourceid><addsrcrecordid>eNqFkD1rwzAQhkVpoenH2lnQpYvTO8lS7DGEfkFCl3TpYmRbThRkK5VsQvrrq5DSQpcOxw33PMfdS8gNwhgB2P2natsxA5QAwNMTMkLBMEkB8JSMANI0YUxOzslFCJuIYI58RNRyrenKulJZqvreq6p3njaxFA1D2OouGNfR0pt6penO9Gva6tb5PVVdTbfK90ZZu6dr0610TUs3dLWK08p1temjGq7IWaNs0Nff_ZK8PT4sZ8_J_PXpZTadJxUXkCYIUkiptE4xF1lVi5pxaBqmG1lmOmtgwpBzjqgU4zLPRJbXDCZCNcArCcgvyd1x79a7j0GHvmhNqLS1qtNuCAVmWYqcYcojevsH3bjBd_G6SEkupADIIjU-UpV3IXjdFFtv2vhcgVAcEi8OiRc_iUchPwo7Y_X-H7p4ny4Wv-4XSraEmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1863565008</pqid></control><display><type>article</type><title>The global attractor for a suspension bridge with memory and partially hinged boundary conditions</title><source>Wiley</source><creator>Messaoudi, Salim A. ; Bonfoh, Ahmed ; Mukiawa, Soh E. ; Enyi, Cyril D.</creator><creatorcontrib>Messaoudi, Salim A. ; Bonfoh, Ahmed ; Mukiawa, Soh E. ; Enyi, Cyril D.</creatorcontrib><description>Recently, Ferrero and Gazzola, [Disc. Cont. Dyn. Syst. 35: 5879–5908 (2015)], suggested and investigated a rectangular plate model describing the statics and dynamics of a suspension bridge. The plate is assumed to be hinged on its vertical edges and free on its remaining horizontal edges. This reliable model aims to describe more accurately the motion of suspension bridges compared to all previous known models. In the present paper, we consider a plate equation in the presence of memory and subject to the above‐mentioned boundary conditions. We give a rigorous well‐posedness result and establish the existence of a global attractor. Recently, Ferrero and Gazzola, [Disc. Cont. Dyn. Syst. 35: 5879–5908 (2015)], suggested and investigated a rectangular plate model describing the statics and dynamics of a suspension bridge. The plate is assumed to be hinged on its vertical edges and free on its remaining horizontal edges. This reliable model aims to describe more accurately the motion of suspension bridges compared to all previous known models. The authors consider a plate equation in the presence of memory and subject to the above‐mentioned boundary conditions. They give a rigorous well‐posedness result and establish the existence of a global attractor.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.201600034</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Boundary conditions ; Disks ; Dynamic tests ; Dynamics ; global attractor ; infinite memory ; Mathematical analysis ; Mathematical models ; Rectangular plates ; Suspension bridge ; Suspension bridges ; well‐posedness</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2017-02, Vol.97 (2), p.159-172</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3504-106566aee41958cd5d230ff2ef6b8e8f072133311aa23698589d2075af03c6013</citedby><cites>FETCH-LOGICAL-c3504-106566aee41958cd5d230ff2ef6b8e8f072133311aa23698589d2075af03c6013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Messaoudi, Salim A.</creatorcontrib><creatorcontrib>Bonfoh, Ahmed</creatorcontrib><creatorcontrib>Mukiawa, Soh E.</creatorcontrib><creatorcontrib>Enyi, Cyril D.</creatorcontrib><title>The global attractor for a suspension bridge with memory and partially hinged boundary conditions</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><description>Recently, Ferrero and Gazzola, [Disc. Cont. Dyn. Syst. 35: 5879–5908 (2015)], suggested and investigated a rectangular plate model describing the statics and dynamics of a suspension bridge. The plate is assumed to be hinged on its vertical edges and free on its remaining horizontal edges. This reliable model aims to describe more accurately the motion of suspension bridges compared to all previous known models. In the present paper, we consider a plate equation in the presence of memory and subject to the above‐mentioned boundary conditions. We give a rigorous well‐posedness result and establish the existence of a global attractor. Recently, Ferrero and Gazzola, [Disc. Cont. Dyn. Syst. 35: 5879–5908 (2015)], suggested and investigated a rectangular plate model describing the statics and dynamics of a suspension bridge. The plate is assumed to be hinged on its vertical edges and free on its remaining horizontal edges. This reliable model aims to describe more accurately the motion of suspension bridges compared to all previous known models. The authors consider a plate equation in the presence of memory and subject to the above‐mentioned boundary conditions. They give a rigorous well‐posedness result and establish the existence of a global attractor.</description><subject>Boundary conditions</subject><subject>Disks</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>global attractor</subject><subject>infinite memory</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Rectangular plates</subject><subject>Suspension bridge</subject><subject>Suspension bridges</subject><subject>well‐posedness</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkD1rwzAQhkVpoenH2lnQpYvTO8lS7DGEfkFCl3TpYmRbThRkK5VsQvrrq5DSQpcOxw33PMfdS8gNwhgB2P2natsxA5QAwNMTMkLBMEkB8JSMANI0YUxOzslFCJuIYI58RNRyrenKulJZqvreq6p3njaxFA1D2OouGNfR0pt6penO9Gva6tb5PVVdTbfK90ZZu6dr0610TUs3dLWK08p1temjGq7IWaNs0Nff_ZK8PT4sZ8_J_PXpZTadJxUXkCYIUkiptE4xF1lVi5pxaBqmG1lmOmtgwpBzjqgU4zLPRJbXDCZCNcArCcgvyd1x79a7j0GHvmhNqLS1qtNuCAVmWYqcYcojevsH3bjBd_G6SEkupADIIjU-UpV3IXjdFFtv2vhcgVAcEi8OiRc_iUchPwo7Y_X-H7p4ny4Wv-4XSraEmA</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Messaoudi, Salim A.</creator><creator>Bonfoh, Ahmed</creator><creator>Mukiawa, Soh E.</creator><creator>Enyi, Cyril D.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201702</creationdate><title>The global attractor for a suspension bridge with memory and partially hinged boundary conditions</title><author>Messaoudi, Salim A. ; Bonfoh, Ahmed ; Mukiawa, Soh E. ; Enyi, Cyril D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3504-106566aee41958cd5d230ff2ef6b8e8f072133311aa23698589d2075af03c6013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary conditions</topic><topic>Disks</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>global attractor</topic><topic>infinite memory</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Rectangular plates</topic><topic>Suspension bridge</topic><topic>Suspension bridges</topic><topic>well‐posedness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Messaoudi, Salim A.</creatorcontrib><creatorcontrib>Bonfoh, Ahmed</creatorcontrib><creatorcontrib>Mukiawa, Soh E.</creatorcontrib><creatorcontrib>Enyi, Cyril D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Messaoudi, Salim A.</au><au>Bonfoh, Ahmed</au><au>Mukiawa, Soh E.</au><au>Enyi, Cyril D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The global attractor for a suspension bridge with memory and partially hinged boundary conditions</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><date>2017-02</date><risdate>2017</risdate><volume>97</volume><issue>2</issue><spage>159</spage><epage>172</epage><pages>159-172</pages><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>Recently, Ferrero and Gazzola, [Disc. Cont. Dyn. Syst. 35: 5879–5908 (2015)], suggested and investigated a rectangular plate model describing the statics and dynamics of a suspension bridge. The plate is assumed to be hinged on its vertical edges and free on its remaining horizontal edges. This reliable model aims to describe more accurately the motion of suspension bridges compared to all previous known models. In the present paper, we consider a plate equation in the presence of memory and subject to the above‐mentioned boundary conditions. We give a rigorous well‐posedness result and establish the existence of a global attractor. Recently, Ferrero and Gazzola, [Disc. Cont. Dyn. Syst. 35: 5879–5908 (2015)], suggested and investigated a rectangular plate model describing the statics and dynamics of a suspension bridge. The plate is assumed to be hinged on its vertical edges and free on its remaining horizontal edges. This reliable model aims to describe more accurately the motion of suspension bridges compared to all previous known models. The authors consider a plate equation in the presence of memory and subject to the above‐mentioned boundary conditions. They give a rigorous well‐posedness result and establish the existence of a global attractor.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/zamm.201600034</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0044-2267
ispartof Zeitschrift für angewandte Mathematik und Mechanik, 2017-02, Vol.97 (2), p.159-172
issn 0044-2267
1521-4001
language eng
recordid cdi_proquest_miscellaneous_1884132143
source Wiley
subjects Boundary conditions
Disks
Dynamic tests
Dynamics
global attractor
infinite memory
Mathematical analysis
Mathematical models
Rectangular plates
Suspension bridge
Suspension bridges
well‐posedness
title The global attractor for a suspension bridge with memory and partially hinged boundary conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A15%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20global%20attractor%20for%20a%20suspension%20bridge%20with%20memory%20and%20partially%20hinged%20boundary%20conditions&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Messaoudi,%20Salim%20A.&rft.date=2017-02&rft.volume=97&rft.issue=2&rft.spage=159&rft.epage=172&rft.pages=159-172&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.201600034&rft_dat=%3Cproquest_cross%3E1884132143%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3504-106566aee41958cd5d230ff2ef6b8e8f072133311aa23698589d2075af03c6013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1863565008&rft_id=info:pmid/&rfr_iscdi=true