Loading…

Recovery of Ductility in Ultrafine-Grained Low-Carbon Steel Processed Through Equal-Channel Angular Pressing Followed by Cold Rolling and Flash Annealing

The low-carbon steel workpieces are deformed by equal-channel angular pressing at 293 K (20 °C) up to an equivalent strain of ~12 using route B c , which results in the bulk ultrafine-grained (UFG) structure with high dislocation density and partial dissolution of cementite. The yield strength (YS)...

Full description

Saved in:
Bibliographic Details
Published in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2017-03, Vol.48 (3), p.1189-1203
Main Authors: Singh, Raj Bahadur, Mukhopadhyay, N. K., Sastry, G. V. S., Manna, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-b63c149617ec041a4637b99a995cf74b628bed2cbc455a486491162e27e93e9d3
cites cdi_FETCH-LOGICAL-c349t-b63c149617ec041a4637b99a995cf74b628bed2cbc455a486491162e27e93e9d3
container_end_page 1203
container_issue 3
container_start_page 1189
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 48
creator Singh, Raj Bahadur
Mukhopadhyay, N. K.
Sastry, G. V. S.
Manna, R.
description The low-carbon steel workpieces are deformed by equal-channel angular pressing at 293 K (20 °C) up to an equivalent strain of ~12 using route B c , which results in the bulk ultrafine-grained (UFG) structure with high dislocation density and partial dissolution of cementite. The yield strength (YS) is enhanced from 208 (as-received) to 872 MPa and the tensile strength is increased from 362 to 996 MPa, but the material loses total elongation (TE) from 36.2 to 2.9 pct. Cold rolling of equal-channel angular pressed steel produces the refined structure of grain size 0.11  μ m. The YS increases further to 924 MPa with a marginal gain in ductility due to the reappearance of the γ fiber component. Flash annealing the samples, which were equal-channel angular pressed followed by cold rolling, at 873 K (600 °C) results in 27 pct of micron-sized (9  µ m) ferrite grains in submicron-sized (
doi_str_mv 10.1007/s11661-016-3892-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884135400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4312397671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-b63c149617ec041a4637b99a995cf74b628bed2cbc455a486491162e27e93e9d3</originalsourceid><addsrcrecordid>eNp1kcFq3DAQhkVpoek2D5CboJde1EqWLFvH4GbTwkJLmpyFLI93HRQpkewk-yh928yyPZRCTjPM__3DMD8hZ4J_EZw3X4sQWgvGhWayNRV7fkNORK0kE0bxt9jzRrJaV_I9-VDKLedcGKlPyJ8r8OkR8p6mkX5b_DyFad7TKdKbMGc3ThHYZXZYBrpJT6xzuU-R_p4BAv2Vk4dSULre5bRsd_TiYXGBdTsXI-rncbsEl5FDaopbuk4hpCfk-z3tUhjoFQ4OgosDXQdXduiJ4A6zj-Td6EKB0791RW7WF9fdd7b5efmjO98wL5WZWa-lF8po0YDnSjilZdMb44yp_dioXldtD0Ple6_q2qlWK4OvqqBqwEgwg1yRz8e99zk9LFBmezcVDyG4CGkpVrStErJWnCP66T_0Ni054nVI6bqq2xZfviLiSPmcSskw2vs83bm8t4LbQ1j2GJbFsOwhLPuMnuroKcjGLeR_Nr9qegHu5JiL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865258854</pqid></control><display><type>article</type><title>Recovery of Ductility in Ultrafine-Grained Low-Carbon Steel Processed Through Equal-Channel Angular Pressing Followed by Cold Rolling and Flash Annealing</title><source>Springer Nature</source><creator>Singh, Raj Bahadur ; Mukhopadhyay, N. K. ; Sastry, G. V. S. ; Manna, R.</creator><creatorcontrib>Singh, Raj Bahadur ; Mukhopadhyay, N. K. ; Sastry, G. V. S. ; Manna, R.</creatorcontrib><description>The low-carbon steel workpieces are deformed by equal-channel angular pressing at 293 K (20 °C) up to an equivalent strain of ~12 using route B c , which results in the bulk ultrafine-grained (UFG) structure with high dislocation density and partial dissolution of cementite. The yield strength (YS) is enhanced from 208 (as-received) to 872 MPa and the tensile strength is increased from 362 to 996 MPa, but the material loses total elongation (TE) from 36.2 to 2.9 pct. Cold rolling of equal-channel angular pressed steel produces the refined structure of grain size 0.11  μ m. The YS increases further to 924 MPa with a marginal gain in ductility due to the reappearance of the γ fiber component. Flash annealing the samples, which were equal-channel angular pressed followed by cold rolling, at 873 K (600 °C) results in 27 pct of micron-sized (9  µ m) ferrite grains in submicron-sized (&lt;1  µ m) matrix with a reduced defect density and small amount of precipitation of cementite. TE increases from 2.9 to 23.3 pct. The material retains a YS of 484 MPa and tensile strength of 517 MPa, which are higher than those of the as-received material. The UFG grains are failed by cleavage, but the micron-sized grains display ductile fracture. The ductility of the flash-annealed material is recovered significantly due to bimodal grain size distribution in ferrite and the development of a good amount of γ fiber texture components. The major contribution toward recovery of ductility comes from the bimodal grain size distribution in ferrite rather the precipitation of cementite.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-016-3892-x</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Annealing ; Cementite ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cold rolling ; Ductility ; Equal channel angular pressing ; Ferrite ; Grains ; Low carbon steel ; Materials Science ; Metallic Materials ; Metallurgy ; Nanotechnology ; Steel alloys ; Structural Materials ; Surfaces and Interfaces ; Texture ; Thin Films ; Yield strength</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2017-03, Vol.48 (3), p.1189-1203</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2016</rights><rights>Metallurgical and Materials Transactions A is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-b63c149617ec041a4637b99a995cf74b628bed2cbc455a486491162e27e93e9d3</citedby><cites>FETCH-LOGICAL-c349t-b63c149617ec041a4637b99a995cf74b628bed2cbc455a486491162e27e93e9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Singh, Raj Bahadur</creatorcontrib><creatorcontrib>Mukhopadhyay, N. K.</creatorcontrib><creatorcontrib>Sastry, G. V. S.</creatorcontrib><creatorcontrib>Manna, R.</creatorcontrib><title>Recovery of Ductility in Ultrafine-Grained Low-Carbon Steel Processed Through Equal-Channel Angular Pressing Followed by Cold Rolling and Flash Annealing</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>The low-carbon steel workpieces are deformed by equal-channel angular pressing at 293 K (20 °C) up to an equivalent strain of ~12 using route B c , which results in the bulk ultrafine-grained (UFG) structure with high dislocation density and partial dissolution of cementite. The yield strength (YS) is enhanced from 208 (as-received) to 872 MPa and the tensile strength is increased from 362 to 996 MPa, but the material loses total elongation (TE) from 36.2 to 2.9 pct. Cold rolling of equal-channel angular pressed steel produces the refined structure of grain size 0.11  μ m. The YS increases further to 924 MPa with a marginal gain in ductility due to the reappearance of the γ fiber component. Flash annealing the samples, which were equal-channel angular pressed followed by cold rolling, at 873 K (600 °C) results in 27 pct of micron-sized (9  µ m) ferrite grains in submicron-sized (&lt;1  µ m) matrix with a reduced defect density and small amount of precipitation of cementite. TE increases from 2.9 to 23.3 pct. The material retains a YS of 484 MPa and tensile strength of 517 MPa, which are higher than those of the as-received material. The UFG grains are failed by cleavage, but the micron-sized grains display ductile fracture. The ductility of the flash-annealed material is recovered significantly due to bimodal grain size distribution in ferrite and the development of a good amount of γ fiber texture components. The major contribution toward recovery of ductility comes from the bimodal grain size distribution in ferrite rather the precipitation of cementite.</description><subject>Annealing</subject><subject>Cementite</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cold rolling</subject><subject>Ductility</subject><subject>Equal channel angular pressing</subject><subject>Ferrite</subject><subject>Grains</subject><subject>Low carbon steel</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Nanotechnology</subject><subject>Steel alloys</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Texture</subject><subject>Thin Films</subject><subject>Yield strength</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kcFq3DAQhkVpoek2D5CboJde1EqWLFvH4GbTwkJLmpyFLI93HRQpkewk-yh928yyPZRCTjPM__3DMD8hZ4J_EZw3X4sQWgvGhWayNRV7fkNORK0kE0bxt9jzRrJaV_I9-VDKLedcGKlPyJ8r8OkR8p6mkX5b_DyFad7TKdKbMGc3ThHYZXZYBrpJT6xzuU-R_p4BAv2Vk4dSULre5bRsd_TiYXGBdTsXI-rncbsEl5FDaopbuk4hpCfk-z3tUhjoFQ4OgosDXQdXduiJ4A6zj-Td6EKB0791RW7WF9fdd7b5efmjO98wL5WZWa-lF8po0YDnSjilZdMb44yp_dioXldtD0Ple6_q2qlWK4OvqqBqwEgwg1yRz8e99zk9LFBmezcVDyG4CGkpVrStErJWnCP66T_0Ni054nVI6bqq2xZfviLiSPmcSskw2vs83bm8t4LbQ1j2GJbFsOwhLPuMnuroKcjGLeR_Nr9qegHu5JiL</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Singh, Raj Bahadur</creator><creator>Mukhopadhyay, N. K.</creator><creator>Sastry, G. V. S.</creator><creator>Manna, R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20170301</creationdate><title>Recovery of Ductility in Ultrafine-Grained Low-Carbon Steel Processed Through Equal-Channel Angular Pressing Followed by Cold Rolling and Flash Annealing</title><author>Singh, Raj Bahadur ; Mukhopadhyay, N. K. ; Sastry, G. V. S. ; Manna, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-b63c149617ec041a4637b99a995cf74b628bed2cbc455a486491162e27e93e9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Annealing</topic><topic>Cementite</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cold rolling</topic><topic>Ductility</topic><topic>Equal channel angular pressing</topic><topic>Ferrite</topic><topic>Grains</topic><topic>Low carbon steel</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Nanotechnology</topic><topic>Steel alloys</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Texture</topic><topic>Thin Films</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Raj Bahadur</creatorcontrib><creatorcontrib>Mukhopadhyay, N. K.</creatorcontrib><creatorcontrib>Sastry, G. V. S.</creatorcontrib><creatorcontrib>Manna, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Raj Bahadur</au><au>Mukhopadhyay, N. K.</au><au>Sastry, G. V. S.</au><au>Manna, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovery of Ductility in Ultrafine-Grained Low-Carbon Steel Processed Through Equal-Channel Angular Pressing Followed by Cold Rolling and Flash Annealing</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>48</volume><issue>3</issue><spage>1189</spage><epage>1203</epage><pages>1189-1203</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>The low-carbon steel workpieces are deformed by equal-channel angular pressing at 293 K (20 °C) up to an equivalent strain of ~12 using route B c , which results in the bulk ultrafine-grained (UFG) structure with high dislocation density and partial dissolution of cementite. The yield strength (YS) is enhanced from 208 (as-received) to 872 MPa and the tensile strength is increased from 362 to 996 MPa, but the material loses total elongation (TE) from 36.2 to 2.9 pct. Cold rolling of equal-channel angular pressed steel produces the refined structure of grain size 0.11  μ m. The YS increases further to 924 MPa with a marginal gain in ductility due to the reappearance of the γ fiber component. Flash annealing the samples, which were equal-channel angular pressed followed by cold rolling, at 873 K (600 °C) results in 27 pct of micron-sized (9  µ m) ferrite grains in submicron-sized (&lt;1  µ m) matrix with a reduced defect density and small amount of precipitation of cementite. TE increases from 2.9 to 23.3 pct. The material retains a YS of 484 MPa and tensile strength of 517 MPa, which are higher than those of the as-received material. The UFG grains are failed by cleavage, but the micron-sized grains display ductile fracture. The ductility of the flash-annealed material is recovered significantly due to bimodal grain size distribution in ferrite and the development of a good amount of γ fiber texture components. The major contribution toward recovery of ductility comes from the bimodal grain size distribution in ferrite rather the precipitation of cementite.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-016-3892-x</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2017-03, Vol.48 (3), p.1189-1203
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_miscellaneous_1884135400
source Springer Nature
subjects Annealing
Cementite
Characterization and Evaluation of Materials
Chemistry and Materials Science
Cold rolling
Ductility
Equal channel angular pressing
Ferrite
Grains
Low carbon steel
Materials Science
Metallic Materials
Metallurgy
Nanotechnology
Steel alloys
Structural Materials
Surfaces and Interfaces
Texture
Thin Films
Yield strength
title Recovery of Ductility in Ultrafine-Grained Low-Carbon Steel Processed Through Equal-Channel Angular Pressing Followed by Cold Rolling and Flash Annealing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovery%20of%20Ductility%20in%20Ultrafine-Grained%20Low-Carbon%20Steel%20Processed%20Through%20Equal-Channel%20Angular%20Pressing%20Followed%20by%20Cold%20Rolling%20and%20Flash%20Annealing&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Singh,%20Raj%20Bahadur&rft.date=2017-03-01&rft.volume=48&rft.issue=3&rft.spage=1189&rft.epage=1203&rft.pages=1189-1203&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-016-3892-x&rft_dat=%3Cproquest_cross%3E4312397671%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-b63c149617ec041a4637b99a995cf74b628bed2cbc455a486491162e27e93e9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1865258854&rft_id=info:pmid/&rfr_iscdi=true