Loading…

Natural killer cells suppress enzalutamide resistance and cell invasion in the castration resistant prostate cancer via targeting the androgen receptor splicing variant 7 (ARv7)

Abstract Despite the success of androgen-deprivation therapy (ADT) with the newly developed anti-androgen enzalutamide (Enz, also known as MDV3100) to suppress castration resistant prostate cancer (CRPC) in extending patient survival by an extra 4.8 months, eventually patients die with the developme...

Full description

Saved in:
Bibliographic Details
Published in:Cancer letters 2017-07, Vol.398, p.62-69
Main Authors: Lin, Shin-Jen, Chou, Fu-Ju, Li, Lei, Lin, Chang-Yi, Yeh, Shuyuan, Chang, Chawnshang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c445t-87eec009255eb4af37b7faf2a4e2a981e5efbc693d254bc874ff7bd8f8585bcf3
cites cdi_FETCH-LOGICAL-c445t-87eec009255eb4af37b7faf2a4e2a981e5efbc693d254bc874ff7bd8f8585bcf3
container_end_page 69
container_issue
container_start_page 62
container_title Cancer letters
container_volume 398
creator Lin, Shin-Jen
Chou, Fu-Ju
Li, Lei
Lin, Chang-Yi
Yeh, Shuyuan
Chang, Chawnshang
description Abstract Despite the success of androgen-deprivation therapy (ADT) with the newly developed anti-androgen enzalutamide (Enz, also known as MDV3100) to suppress castration resistant prostate cancer (CRPC) in extending patient survival by an extra 4.8 months, eventually patients die with the development of Enz resistance that may involve the induction of the androgen receptor (AR) splicing variant ARv7. Here we identify an unrecognized role of Natural Killer (NK) cells in the prostate tumor microenvironment that can be better recruited to the CRPC cells to suppress ARv7 expression resulting in suppressing the Enz resistant CRPC cell growth and invasion. Mechanism dissection revealed that CRPC cells compared to normal prostate epithelial cells could recruit more NK cells that might then lead to alterations of the microRNA-34 and microRNA-449 to suppress both ARv7 expression and ARv7-induced EZH2 expression to suppress CRPC cell invasion. Together, these results identify a new potential therapy using recruited NK cells to better suppress the Enz resistance and cell invasion in CRPC at the later enzalutamide resistant stage.
doi_str_mv 10.1016/j.canlet.2017.03.035
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884164989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304383517302173</els_id><sourcerecordid>1895496295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-87eec009255eb4af37b7faf2a4e2a981e5efbc693d254bc874ff7bd8f8585bcf3</originalsourceid><addsrcrecordid>eNqFkl1vFCEUhonR2LX6D4wh8aZe7MoMsDA3Jk3jV9Jo4sc1OcOcWdmyMyMwk9R_5T8Uuq0mvTEhQA7P-3I4B0KeV2xTsWr7er-xMHhMm5pVasN4HvIBWVVa1WvVaPaQrBhnYs01lyfkSYx7xpgUSj4mJ7XmijMmVuT3J0hzAE-vnPcYqEXvI43zNAWMkeLwC_yc4OA6pDniYoLBIoWhu0GpGxaIbhzyhqYfSC3EFCCVyB2e6BTGvEnlNIsDXRzQBGGHyQ27G1n2C-MOi8jilMZA4-SdLccLBFdMFD07_7KoV0_Jox58xGe36yn5_u7tt4sP68vP7z9enF-urRAyrbVCtIw1tZTYCui5alUPfQ0Ca2h0hRL71m4b3tVStFYr0feq7XSvpZat7fkpOTv65ux_zhiTObhY3gwDjnM0ldai2opGNxl9eQ_dj3MYcnaZaqRotnUjMyWOlM3liAF7MwV3gHBtKmZKS83eHFtqSksN43kU2Ytb87k9YPdXdNfDDLw5ApirsTgMJlqHudCdy9VMphvd_264b2C9G5wFf4XXGP-9xcTaMPO1fKvyq6p8f50n_geO1c2O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1895496295</pqid></control><display><type>article</type><title>Natural killer cells suppress enzalutamide resistance and cell invasion in the castration resistant prostate cancer via targeting the androgen receptor splicing variant 7 (ARv7)</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Lin, Shin-Jen ; Chou, Fu-Ju ; Li, Lei ; Lin, Chang-Yi ; Yeh, Shuyuan ; Chang, Chawnshang</creator><creatorcontrib>Lin, Shin-Jen ; Chou, Fu-Ju ; Li, Lei ; Lin, Chang-Yi ; Yeh, Shuyuan ; Chang, Chawnshang</creatorcontrib><description>Abstract Despite the success of androgen-deprivation therapy (ADT) with the newly developed anti-androgen enzalutamide (Enz, also known as MDV3100) to suppress castration resistant prostate cancer (CRPC) in extending patient survival by an extra 4.8 months, eventually patients die with the development of Enz resistance that may involve the induction of the androgen receptor (AR) splicing variant ARv7. Here we identify an unrecognized role of Natural Killer (NK) cells in the prostate tumor microenvironment that can be better recruited to the CRPC cells to suppress ARv7 expression resulting in suppressing the Enz resistant CRPC cell growth and invasion. Mechanism dissection revealed that CRPC cells compared to normal prostate epithelial cells could recruit more NK cells that might then lead to alterations of the microRNA-34 and microRNA-449 to suppress both ARv7 expression and ARv7-induced EZH2 expression to suppress CRPC cell invasion. Together, these results identify a new potential therapy using recruited NK cells to better suppress the Enz resistance and cell invasion in CRPC at the later enzalutamide resistant stage.</description><identifier>ISSN: 0304-3835</identifier><identifier>EISSN: 1872-7980</identifier><identifier>DOI: 10.1016/j.canlet.2017.03.035</identifier><identifier>PMID: 28373004</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>2-Mercaptoethanol ; Adhesion ; Adoptive transfer ; Agar ; Alternative Splicing ; American Type Culture Collection ; Androgen Antagonists - pharmacology ; Androgen receptors ; Androgens ; Animals ; Antibiotics ; Antibodies ; Antigens ; Antineoplastic Agents, Hormonal - pharmacology ; ARv7 ; Assaying ; Bicarbonates ; Biotechnology ; Bone marrow ; Cell Line, Tumor ; Cell Movement - drug effects ; Cell Proliferation - drug effects ; Chemotaxis, Leukocyte ; Clumps ; Coculture Techniques ; Cytotoxicity ; Down-Regulation ; Drug Resistance, Neoplasm ; Enhancer of Zeste Homolog 2 Protein - metabolism ; Enzalutamide ; Gene expression ; Gene silencing ; Glands ; Hematology, Oncology and Palliative Medicine ; Humans ; Immune response ; Immunoglobulins ; Immunotherapy ; Incidence ; Inhibition ; Inhibitors ; Killer Cells, Natural - immunology ; Killer Cells, Natural - metabolism ; Lymph nodes ; Lymphocytes ; Lymphocytes B ; Lymphocytes, Tumor-Infiltrating - immunology ; Lymphocytes, Tumor-Infiltrating - metabolism ; Lysis ; Male ; Media ; Metastasis ; Mice, Nude ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Natural Killer cells ; Neoplasm Invasiveness ; Nucleic acids ; Pathogens ; Peptides ; Phenotype ; Phenylthiohydantoin - analogs &amp; derivatives ; Phenylthiohydantoin - pharmacology ; Pore size ; Porosity ; Prostate cancer ; Prostatic Neoplasms, Castration-Resistant - drug therapy ; Prostatic Neoplasms, Castration-Resistant - immunology ; Prostatic Neoplasms, Castration-Resistant - metabolism ; Prostatic Neoplasms, Castration-Resistant - pathology ; Protein Isoforms ; Proteins ; Receptors, Androgen - drug effects ; Receptors, Androgen - metabolism ; Signal Transduction - drug effects ; Sodium ; Solidification ; Splicing ; Stem cells ; Time Factors ; Tumor cells ; Tumor Microenvironment ; Xenograft Model Antitumor Assays</subject><ispartof>Cancer letters, 2017-07, Vol.398, p.62-69</ispartof><rights>Elsevier B.V.</rights><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier Limited Jul 10, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-87eec009255eb4af37b7faf2a4e2a981e5efbc693d254bc874ff7bd8f8585bcf3</citedby><cites>FETCH-LOGICAL-c445t-87eec009255eb4af37b7faf2a4e2a981e5efbc693d254bc874ff7bd8f8585bcf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28373004$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Shin-Jen</creatorcontrib><creatorcontrib>Chou, Fu-Ju</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Lin, Chang-Yi</creatorcontrib><creatorcontrib>Yeh, Shuyuan</creatorcontrib><creatorcontrib>Chang, Chawnshang</creatorcontrib><title>Natural killer cells suppress enzalutamide resistance and cell invasion in the castration resistant prostate cancer via targeting the androgen receptor splicing variant 7 (ARv7)</title><title>Cancer letters</title><addtitle>Cancer Lett</addtitle><description>Abstract Despite the success of androgen-deprivation therapy (ADT) with the newly developed anti-androgen enzalutamide (Enz, also known as MDV3100) to suppress castration resistant prostate cancer (CRPC) in extending patient survival by an extra 4.8 months, eventually patients die with the development of Enz resistance that may involve the induction of the androgen receptor (AR) splicing variant ARv7. Here we identify an unrecognized role of Natural Killer (NK) cells in the prostate tumor microenvironment that can be better recruited to the CRPC cells to suppress ARv7 expression resulting in suppressing the Enz resistant CRPC cell growth and invasion. Mechanism dissection revealed that CRPC cells compared to normal prostate epithelial cells could recruit more NK cells that might then lead to alterations of the microRNA-34 and microRNA-449 to suppress both ARv7 expression and ARv7-induced EZH2 expression to suppress CRPC cell invasion. Together, these results identify a new potential therapy using recruited NK cells to better suppress the Enz resistance and cell invasion in CRPC at the later enzalutamide resistant stage.</description><subject>2-Mercaptoethanol</subject><subject>Adhesion</subject><subject>Adoptive transfer</subject><subject>Agar</subject><subject>Alternative Splicing</subject><subject>American Type Culture Collection</subject><subject>Androgen Antagonists - pharmacology</subject><subject>Androgen receptors</subject><subject>Androgens</subject><subject>Animals</subject><subject>Antibiotics</subject><subject>Antibodies</subject><subject>Antigens</subject><subject>Antineoplastic Agents, Hormonal - pharmacology</subject><subject>ARv7</subject><subject>Assaying</subject><subject>Bicarbonates</subject><subject>Biotechnology</subject><subject>Bone marrow</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Chemotaxis, Leukocyte</subject><subject>Clumps</subject><subject>Coculture Techniques</subject><subject>Cytotoxicity</subject><subject>Down-Regulation</subject><subject>Drug Resistance, Neoplasm</subject><subject>Enhancer of Zeste Homolog 2 Protein - metabolism</subject><subject>Enzalutamide</subject><subject>Gene expression</subject><subject>Gene silencing</subject><subject>Glands</subject><subject>Hematology, Oncology and Palliative Medicine</subject><subject>Humans</subject><subject>Immune response</subject><subject>Immunoglobulins</subject><subject>Immunotherapy</subject><subject>Incidence</subject><subject>Inhibition</subject><subject>Inhibitors</subject><subject>Killer Cells, Natural - immunology</subject><subject>Killer Cells, Natural - metabolism</subject><subject>Lymph nodes</subject><subject>Lymphocytes</subject><subject>Lymphocytes B</subject><subject>Lymphocytes, Tumor-Infiltrating - immunology</subject><subject>Lymphocytes, Tumor-Infiltrating - metabolism</subject><subject>Lysis</subject><subject>Male</subject><subject>Media</subject><subject>Metastasis</subject><subject>Mice, Nude</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Natural Killer cells</subject><subject>Neoplasm Invasiveness</subject><subject>Nucleic acids</subject><subject>Pathogens</subject><subject>Peptides</subject><subject>Phenotype</subject><subject>Phenylthiohydantoin - analogs &amp; derivatives</subject><subject>Phenylthiohydantoin - pharmacology</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms, Castration-Resistant - drug therapy</subject><subject>Prostatic Neoplasms, Castration-Resistant - immunology</subject><subject>Prostatic Neoplasms, Castration-Resistant - metabolism</subject><subject>Prostatic Neoplasms, Castration-Resistant - pathology</subject><subject>Protein Isoforms</subject><subject>Proteins</subject><subject>Receptors, Androgen - drug effects</subject><subject>Receptors, Androgen - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Sodium</subject><subject>Solidification</subject><subject>Splicing</subject><subject>Stem cells</subject><subject>Time Factors</subject><subject>Tumor cells</subject><subject>Tumor Microenvironment</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0304-3835</issn><issn>1872-7980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkl1vFCEUhonR2LX6D4wh8aZe7MoMsDA3Jk3jV9Jo4sc1OcOcWdmyMyMwk9R_5T8Uuq0mvTEhQA7P-3I4B0KeV2xTsWr7er-xMHhMm5pVasN4HvIBWVVa1WvVaPaQrBhnYs01lyfkSYx7xpgUSj4mJ7XmijMmVuT3J0hzAE-vnPcYqEXvI43zNAWMkeLwC_yc4OA6pDniYoLBIoWhu0GpGxaIbhzyhqYfSC3EFCCVyB2e6BTGvEnlNIsDXRzQBGGHyQ27G1n2C-MOi8jilMZA4-SdLccLBFdMFD07_7KoV0_Jox58xGe36yn5_u7tt4sP68vP7z9enF-urRAyrbVCtIw1tZTYCui5alUPfQ0Ca2h0hRL71m4b3tVStFYr0feq7XSvpZat7fkpOTv65ux_zhiTObhY3gwDjnM0ldai2opGNxl9eQ_dj3MYcnaZaqRotnUjMyWOlM3liAF7MwV3gHBtKmZKS83eHFtqSksN43kU2Ytb87k9YPdXdNfDDLw5ApirsTgMJlqHudCdy9VMphvd_264b2C9G5wFf4XXGP-9xcTaMPO1fKvyq6p8f50n_geO1c2O</recordid><startdate>20170710</startdate><enddate>20170710</enddate><creator>Lin, Shin-Jen</creator><creator>Chou, Fu-Ju</creator><creator>Li, Lei</creator><creator>Lin, Chang-Yi</creator><creator>Yeh, Shuyuan</creator><creator>Chang, Chawnshang</creator><general>Elsevier B.V</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20170710</creationdate><title>Natural killer cells suppress enzalutamide resistance and cell invasion in the castration resistant prostate cancer via targeting the androgen receptor splicing variant 7 (ARv7)</title><author>Lin, Shin-Jen ; Chou, Fu-Ju ; Li, Lei ; Lin, Chang-Yi ; Yeh, Shuyuan ; Chang, Chawnshang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-87eec009255eb4af37b7faf2a4e2a981e5efbc693d254bc874ff7bd8f8585bcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>2-Mercaptoethanol</topic><topic>Adhesion</topic><topic>Adoptive transfer</topic><topic>Agar</topic><topic>Alternative Splicing</topic><topic>American Type Culture Collection</topic><topic>Androgen Antagonists - pharmacology</topic><topic>Androgen receptors</topic><topic>Androgens</topic><topic>Animals</topic><topic>Antibiotics</topic><topic>Antibodies</topic><topic>Antigens</topic><topic>Antineoplastic Agents, Hormonal - pharmacology</topic><topic>ARv7</topic><topic>Assaying</topic><topic>Bicarbonates</topic><topic>Biotechnology</topic><topic>Bone marrow</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Chemotaxis, Leukocyte</topic><topic>Clumps</topic><topic>Coculture Techniques</topic><topic>Cytotoxicity</topic><topic>Down-Regulation</topic><topic>Drug Resistance, Neoplasm</topic><topic>Enhancer of Zeste Homolog 2 Protein - metabolism</topic><topic>Enzalutamide</topic><topic>Gene expression</topic><topic>Gene silencing</topic><topic>Glands</topic><topic>Hematology, Oncology and Palliative Medicine</topic><topic>Humans</topic><topic>Immune response</topic><topic>Immunoglobulins</topic><topic>Immunotherapy</topic><topic>Incidence</topic><topic>Inhibition</topic><topic>Inhibitors</topic><topic>Killer Cells, Natural - immunology</topic><topic>Killer Cells, Natural - metabolism</topic><topic>Lymph nodes</topic><topic>Lymphocytes</topic><topic>Lymphocytes B</topic><topic>Lymphocytes, Tumor-Infiltrating - immunology</topic><topic>Lymphocytes, Tumor-Infiltrating - metabolism</topic><topic>Lysis</topic><topic>Male</topic><topic>Media</topic><topic>Metastasis</topic><topic>Mice, Nude</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Natural Killer cells</topic><topic>Neoplasm Invasiveness</topic><topic>Nucleic acids</topic><topic>Pathogens</topic><topic>Peptides</topic><topic>Phenotype</topic><topic>Phenylthiohydantoin - analogs &amp; derivatives</topic><topic>Phenylthiohydantoin - pharmacology</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms, Castration-Resistant - drug therapy</topic><topic>Prostatic Neoplasms, Castration-Resistant - immunology</topic><topic>Prostatic Neoplasms, Castration-Resistant - metabolism</topic><topic>Prostatic Neoplasms, Castration-Resistant - pathology</topic><topic>Protein Isoforms</topic><topic>Proteins</topic><topic>Receptors, Androgen - drug effects</topic><topic>Receptors, Androgen - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Sodium</topic><topic>Solidification</topic><topic>Splicing</topic><topic>Stem cells</topic><topic>Time Factors</topic><topic>Tumor cells</topic><topic>Tumor Microenvironment</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Shin-Jen</creatorcontrib><creatorcontrib>Chou, Fu-Ju</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Lin, Chang-Yi</creatorcontrib><creatorcontrib>Yeh, Shuyuan</creatorcontrib><creatorcontrib>Chang, Chawnshang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Shin-Jen</au><au>Chou, Fu-Ju</au><au>Li, Lei</au><au>Lin, Chang-Yi</au><au>Yeh, Shuyuan</au><au>Chang, Chawnshang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural killer cells suppress enzalutamide resistance and cell invasion in the castration resistant prostate cancer via targeting the androgen receptor splicing variant 7 (ARv7)</atitle><jtitle>Cancer letters</jtitle><addtitle>Cancer Lett</addtitle><date>2017-07-10</date><risdate>2017</risdate><volume>398</volume><spage>62</spage><epage>69</epage><pages>62-69</pages><issn>0304-3835</issn><eissn>1872-7980</eissn><abstract>Abstract Despite the success of androgen-deprivation therapy (ADT) with the newly developed anti-androgen enzalutamide (Enz, also known as MDV3100) to suppress castration resistant prostate cancer (CRPC) in extending patient survival by an extra 4.8 months, eventually patients die with the development of Enz resistance that may involve the induction of the androgen receptor (AR) splicing variant ARv7. Here we identify an unrecognized role of Natural Killer (NK) cells in the prostate tumor microenvironment that can be better recruited to the CRPC cells to suppress ARv7 expression resulting in suppressing the Enz resistant CRPC cell growth and invasion. Mechanism dissection revealed that CRPC cells compared to normal prostate epithelial cells could recruit more NK cells that might then lead to alterations of the microRNA-34 and microRNA-449 to suppress both ARv7 expression and ARv7-induced EZH2 expression to suppress CRPC cell invasion. Together, these results identify a new potential therapy using recruited NK cells to better suppress the Enz resistance and cell invasion in CRPC at the later enzalutamide resistant stage.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>28373004</pmid><doi>10.1016/j.canlet.2017.03.035</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3835
ispartof Cancer letters, 2017-07, Vol.398, p.62-69
issn 0304-3835
1872-7980
language eng
recordid cdi_proquest_miscellaneous_1884164989
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects 2-Mercaptoethanol
Adhesion
Adoptive transfer
Agar
Alternative Splicing
American Type Culture Collection
Androgen Antagonists - pharmacology
Androgen receptors
Androgens
Animals
Antibiotics
Antibodies
Antigens
Antineoplastic Agents, Hormonal - pharmacology
ARv7
Assaying
Bicarbonates
Biotechnology
Bone marrow
Cell Line, Tumor
Cell Movement - drug effects
Cell Proliferation - drug effects
Chemotaxis, Leukocyte
Clumps
Coculture Techniques
Cytotoxicity
Down-Regulation
Drug Resistance, Neoplasm
Enhancer of Zeste Homolog 2 Protein - metabolism
Enzalutamide
Gene expression
Gene silencing
Glands
Hematology, Oncology and Palliative Medicine
Humans
Immune response
Immunoglobulins
Immunotherapy
Incidence
Inhibition
Inhibitors
Killer Cells, Natural - immunology
Killer Cells, Natural - metabolism
Lymph nodes
Lymphocytes
Lymphocytes B
Lymphocytes, Tumor-Infiltrating - immunology
Lymphocytes, Tumor-Infiltrating - metabolism
Lysis
Male
Media
Metastasis
Mice, Nude
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
Natural Killer cells
Neoplasm Invasiveness
Nucleic acids
Pathogens
Peptides
Phenotype
Phenylthiohydantoin - analogs & derivatives
Phenylthiohydantoin - pharmacology
Pore size
Porosity
Prostate cancer
Prostatic Neoplasms, Castration-Resistant - drug therapy
Prostatic Neoplasms, Castration-Resistant - immunology
Prostatic Neoplasms, Castration-Resistant - metabolism
Prostatic Neoplasms, Castration-Resistant - pathology
Protein Isoforms
Proteins
Receptors, Androgen - drug effects
Receptors, Androgen - metabolism
Signal Transduction - drug effects
Sodium
Solidification
Splicing
Stem cells
Time Factors
Tumor cells
Tumor Microenvironment
Xenograft Model Antitumor Assays
title Natural killer cells suppress enzalutamide resistance and cell invasion in the castration resistant prostate cancer via targeting the androgen receptor splicing variant 7 (ARv7)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A18%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20killer%20cells%20suppress%20enzalutamide%20resistance%20and%20cell%20invasion%20in%20the%20castration%20resistant%20prostate%20cancer%20via%20targeting%20the%20androgen%20receptor%20splicing%20variant%207%20(ARv7)&rft.jtitle=Cancer%20letters&rft.au=Lin,%20Shin-Jen&rft.date=2017-07-10&rft.volume=398&rft.spage=62&rft.epage=69&rft.pages=62-69&rft.issn=0304-3835&rft.eissn=1872-7980&rft_id=info:doi/10.1016/j.canlet.2017.03.035&rft_dat=%3Cproquest_cross%3E1895496295%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c445t-87eec009255eb4af37b7faf2a4e2a981e5efbc693d254bc874ff7bd8f8585bcf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1895496295&rft_id=info:pmid/28373004&rfr_iscdi=true