Loading…

Vibration damping using a spiral acoustic black hole

This study starts with a simple question: can the vibration of plates or beams be efficiently reduced using a lightweight structure that occupies a small space? As an efficient technique to damp vibration, the concept of an acoustic black hole (ABH) is adopted with a simple modification of the geome...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of the Acoustical Society of America 2017-03, Vol.141 (3), p.1437-1445
Main Authors: Lee, Jae Yeon, Jeon, Wonju
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-c8ca80aee6c8da3a25f7856c69ee33204f3c2dc0313c88754286400077ab0a273
cites cdi_FETCH-LOGICAL-c351t-c8ca80aee6c8da3a25f7856c69ee33204f3c2dc0313c88754286400077ab0a273
container_end_page 1445
container_issue 3
container_start_page 1437
container_title The Journal of the Acoustical Society of America
container_volume 141
creator Lee, Jae Yeon
Jeon, Wonju
description This study starts with a simple question: can the vibration of plates or beams be efficiently reduced using a lightweight structure that occupies a small space? As an efficient technique to damp vibration, the concept of an acoustic black hole (ABH) is adopted with a simple modification of the geometry. The original shape of an ABH is a straight wedge-type profile with power-law thickness, with the reduction of vibration in beams or plates increasing as the length of the ABH increases. However, in real-world applications, there exists an upper bound of the length of an ABH due to space limitations. Therefore, in this study, the authors propose a curvilinear shaped ABH using the simple mathematical geometry of an Archimedean spiral, which allows a uniform gap distance between adjacent baselines of the spiral. In numerical simulations, the damping performance increases as the arc length of the Archimedean spiral increases, regardless of the curvature of the spiral in the mid- and high-frequency ranges. Adding damping material to an ABH can also strongly enhance the damping performance while not significantly increasing the weight. In addition, the radiated sound power of a spiral ABH is similar to that of a standard ABH.
doi_str_mv 10.1121/1.4976687
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884170694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884170694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-c8ca80aee6c8da3a25f7856c69ee33204f3c2dc0313c88754286400077ab0a273</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRbK0u_AOSpS5S5z03Syn1AQU36na4mUx0NGniTLLw35vS6uYeLnwcDh8hl4wuGePsli1lYbQGc0TmTHGag-LymMwppSyXhdYzcpbS5_QqEMUpmXEQhtNCzol8C2XEIXTbrMK2D9v3bEy7i1nqQ8QmQ9eNaQguKxt0X9lH1_hzclJjk_zFIRfk9X79snrMN88PT6u7Te6EYkPuwCFQ9F47qFAgV7UBpZ0uvBeCU1kLxytHBRMOwCjJQctppDFYUuRGLMj1vreP3ffo02DbkJxvGtz6aZRlAJIZqgs5oTd71MUupehr28fQYvyxjNqdJMvsQdLEXh1qx7L11T_5Z0X8AsEQX0Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884170694</pqid></control><display><type>article</type><title>Vibration damping using a spiral acoustic black hole</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Lee, Jae Yeon ; Jeon, Wonju</creator><creatorcontrib>Lee, Jae Yeon ; Jeon, Wonju</creatorcontrib><description>This study starts with a simple question: can the vibration of plates or beams be efficiently reduced using a lightweight structure that occupies a small space? As an efficient technique to damp vibration, the concept of an acoustic black hole (ABH) is adopted with a simple modification of the geometry. The original shape of an ABH is a straight wedge-type profile with power-law thickness, with the reduction of vibration in beams or plates increasing as the length of the ABH increases. However, in real-world applications, there exists an upper bound of the length of an ABH due to space limitations. Therefore, in this study, the authors propose a curvilinear shaped ABH using the simple mathematical geometry of an Archimedean spiral, which allows a uniform gap distance between adjacent baselines of the spiral. In numerical simulations, the damping performance increases as the arc length of the Archimedean spiral increases, regardless of the curvature of the spiral in the mid- and high-frequency ranges. Adding damping material to an ABH can also strongly enhance the damping performance while not significantly increasing the weight. In addition, the radiated sound power of a spiral ABH is similar to that of a standard ABH.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.4976687</identifier><identifier>PMID: 28372094</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of the Acoustical Society of America, 2017-03, Vol.141 (3), p.1437-1445</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-c8ca80aee6c8da3a25f7856c69ee33204f3c2dc0313c88754286400077ab0a273</citedby><cites>FETCH-LOGICAL-c351t-c8ca80aee6c8da3a25f7856c69ee33204f3c2dc0313c88754286400077ab0a273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28372094$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Jae Yeon</creatorcontrib><creatorcontrib>Jeon, Wonju</creatorcontrib><title>Vibration damping using a spiral acoustic black hole</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>This study starts with a simple question: can the vibration of plates or beams be efficiently reduced using a lightweight structure that occupies a small space? As an efficient technique to damp vibration, the concept of an acoustic black hole (ABH) is adopted with a simple modification of the geometry. The original shape of an ABH is a straight wedge-type profile with power-law thickness, with the reduction of vibration in beams or plates increasing as the length of the ABH increases. However, in real-world applications, there exists an upper bound of the length of an ABH due to space limitations. Therefore, in this study, the authors propose a curvilinear shaped ABH using the simple mathematical geometry of an Archimedean spiral, which allows a uniform gap distance between adjacent baselines of the spiral. In numerical simulations, the damping performance increases as the arc length of the Archimedean spiral increases, regardless of the curvature of the spiral in the mid- and high-frequency ranges. Adding damping material to an ABH can also strongly enhance the damping performance while not significantly increasing the weight. In addition, the radiated sound power of a spiral ABH is similar to that of a standard ABH.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRbK0u_AOSpS5S5z03Syn1AQU36na4mUx0NGniTLLw35vS6uYeLnwcDh8hl4wuGePsli1lYbQGc0TmTHGag-LymMwppSyXhdYzcpbS5_QqEMUpmXEQhtNCzol8C2XEIXTbrMK2D9v3bEy7i1nqQ8QmQ9eNaQguKxt0X9lH1_hzclJjk_zFIRfk9X79snrMN88PT6u7Te6EYkPuwCFQ9F47qFAgV7UBpZ0uvBeCU1kLxytHBRMOwCjJQctppDFYUuRGLMj1vreP3ffo02DbkJxvGtz6aZRlAJIZqgs5oTd71MUupehr28fQYvyxjNqdJMvsQdLEXh1qx7L11T_5Z0X8AsEQX0Y</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Lee, Jae Yeon</creator><creator>Jeon, Wonju</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201703</creationdate><title>Vibration damping using a spiral acoustic black hole</title><author>Lee, Jae Yeon ; Jeon, Wonju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-c8ca80aee6c8da3a25f7856c69ee33204f3c2dc0313c88754286400077ab0a273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jae Yeon</creatorcontrib><creatorcontrib>Jeon, Wonju</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jae Yeon</au><au>Jeon, Wonju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibration damping using a spiral acoustic black hole</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2017-03</date><risdate>2017</risdate><volume>141</volume><issue>3</issue><spage>1437</spage><epage>1445</epage><pages>1437-1445</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>This study starts with a simple question: can the vibration of plates or beams be efficiently reduced using a lightweight structure that occupies a small space? As an efficient technique to damp vibration, the concept of an acoustic black hole (ABH) is adopted with a simple modification of the geometry. The original shape of an ABH is a straight wedge-type profile with power-law thickness, with the reduction of vibration in beams or plates increasing as the length of the ABH increases. However, in real-world applications, there exists an upper bound of the length of an ABH due to space limitations. Therefore, in this study, the authors propose a curvilinear shaped ABH using the simple mathematical geometry of an Archimedean spiral, which allows a uniform gap distance between adjacent baselines of the spiral. In numerical simulations, the damping performance increases as the arc length of the Archimedean spiral increases, regardless of the curvature of the spiral in the mid- and high-frequency ranges. Adding damping material to an ABH can also strongly enhance the damping performance while not significantly increasing the weight. In addition, the radiated sound power of a spiral ABH is similar to that of a standard ABH.</abstract><cop>United States</cop><pmid>28372094</pmid><doi>10.1121/1.4976687</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2017-03, Vol.141 (3), p.1437-1445
issn 0001-4966
1520-8524
language eng
recordid cdi_proquest_miscellaneous_1884170694
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
title Vibration damping using a spiral acoustic black hole
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibration%20damping%20using%20a%20spiral%20acoustic%20black%20hole&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Lee,%20Jae%20Yeon&rft.date=2017-03&rft.volume=141&rft.issue=3&rft.spage=1437&rft.epage=1445&rft.pages=1437-1445&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.4976687&rft_dat=%3Cproquest_cross%3E1884170694%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-c8ca80aee6c8da3a25f7856c69ee33204f3c2dc0313c88754286400077ab0a273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1884170694&rft_id=info:pmid/28372094&rfr_iscdi=true