Loading…

Do ecological communities disperse across biogeographic barriers as a unit?

Biogeographic barriers have long been implicated as drivers of biological diversification, but how these barriers influence co‐occurring taxa can vary depending on factors intrinsic to the organism and in their relationships with other species. Due to the interdependence among taxa, ecological commu...

Full description

Saved in:
Bibliographic Details
Published in:Molecular ecology 2017-07, Vol.26 (13), p.3533-3545
Main Authors: Satler, Jordan D., Carstens, Bryan C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Biogeographic barriers have long been implicated as drivers of biological diversification, but how these barriers influence co‐occurring taxa can vary depending on factors intrinsic to the organism and in their relationships with other species. Due to the interdependence among taxa, ecological communities present a compelling opportunity to explore how interactions among species may lead to a shared response to historical events. Here we collect single nucleotide polymorphism data from five commensal arthropods associated with the Sarracenia alata carnivorous pitcher plant, and test for codiversification across the Mississippi River, a major biogeographic barrier in the southeastern United States. Population genetic structure in three of the ecologically dependent arthropods mirrors that of the host pitcher plant, with divergence time estimates suggesting two of the species (the pitcher plant moth Exyra semicrocea and a flesh fly Sarcophaga sarraceniae) dispersed synchronously across this barrier along with the pitcher plant. Patterns in population size and genetic diversity suggest the plant and ecologically dependent arthropods dispersed from east to west across the Mississippi River. In contrast, species less dependent on the plant ecologically show discordant phylogeographic patterns. This study demonstrates that ecological relationships may be an important predictor of codiversification, and supports recent suggestions that organismal trait data should be prominently featured in comparative phylogeographic investigations.
ISSN:0962-1083
1365-294X
DOI:10.1111/mec.14137