Loading…
Large‐area spectrally encoded confocal endomicroscopy of the human esophagus in vivo
Background and Objective Diagnosis of esophageal diseases is often hampered by sampling errors that are inherent in endoscopic biopsy, the standard of care. Spectrally encoded confocal microscopy (SECM) is a high‐speed reflectance confocal endomicroscopy technology that has the potential to visualiz...
Saved in:
Published in: | Lasers in surgery and medicine 2017-03, Vol.49 (3), p.233-239 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background and Objective
Diagnosis of esophageal diseases is often hampered by sampling errors that are inherent in endoscopic biopsy, the standard of care. Spectrally encoded confocal microscopy (SECM) is a high‐speed reflectance confocal endomicroscopy technology that has the potential to visualize cellular features from large regions of the esophagus, greatly decreasing the likelihood of sampling error. In this paper, we report results from a pilot clinical study imaging the human esophagus in vivo with a prototype SECM endoscopic probe.
Materials and Methods
In this pilot clinical study, six patients undergoing esophagogastroduodenoscopy (EGD) for surveillance of Barrett's esophagus (BE) were imaged with the SECM endoscopic probe. The device had a diameter of 7 mm, a length of 2 m, and a rapid‐exchange guide wire provision for esophageal placement. During EGD, the distal portion of the esophagus of each patient was sprayed with 2.5% acetic acid to enhance nuclear contrast. The SECM endoscopic probe was then introduced over the guide wire to the distal esophagus and large‐area confocal images were obtained by helically scanning the optics within the SECM probe.
Results
Large area confocal images of the distal esophagus (image length = 4.3–10 cm; image width = 2.2 cm) were rapidly acquired at a rate of ∼9 mm2/second, resulting in short procedural times (1.8–4 minutes). SECM enabled the visualization of clinically relevant architectural and cellular features of the proximal stomach and normal and diseased esophagus, including squamous cell nuclei, BE glands, and goblet cells.
Conclusions
This study demonstrates that comprehensive spectrally encoded confocal endomicroscopy is feasible and can be used to visualize architectural and cellular microscopic features from large segments of the distal esophagus at the gastroesophageal junction. By providing microscopic images that are less subject to sampling error, this technology may find utility in guiding biopsy and planning and assessing endoscopic therapy. Lasers Surg. Med. 49:233–239, 2017. © 2016 Wiley Periodicals, Inc. |
---|---|
ISSN: | 0196-8092 1096-9101 |
DOI: | 10.1002/lsm.22585 |