Loading…
Immunohistochemical analysis of dentin matrix protein 1 (Dmp1) phosphorylation by Fam20C in bone: implications for the induction of biomineralization
Dmp1 is an acidic phosphoprotein that is specifically expressed in osteocytes. During the secretory process, the full-length, precursor Dmp1 is cleaved into N- and C-terminal fragments. C-terminal Dmp1 is phosphorylated, becoming a highly negatively charged domain that may assist in bone mineralizat...
Saved in:
Published in: | Histochemistry and cell biology 2017-03, Vol.147 (3), p.341-351 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dmp1 is an acidic phosphoprotein that is specifically expressed in osteocytes. During the secretory process, the full-length, precursor Dmp1 is cleaved into N- and C-terminal fragments. C-terminal Dmp1 is phosphorylated, becoming a highly negatively charged domain that may assist in bone mineralization by recruiting calcium ions and influencing subsequent mineral deposition. It has been recently reported that the Golgi-localized protein kinase Fam20C phosphorylates Dmp1 in vitro. To investigate this phosphorylation in situ, we determined the locations of phosphorylated Dmp1 and Fam20C in rat bones using immunohistochemistry. During osteocytogenesis, osteoblastic, osteoid, and young osteocytes (but not old osteocytes) express
Dmp1
mRNA and contain Dmp1 protein in the Golgi apparatus. These Dmp1-producing cells were distributed across the surface layer of cortical bone. Using immunofluorescence, we found that N- and C-terminal Dmp1 fragments were predominantly distributed along the lacunar walls and canaliculi of mineralized bone, respectively, but were not present in the osteoid matrix. We also found that Fam20C and its substrate, C-terminal Dmp1, colocalized in the Golgi of osteoblastic, osteoid, and young osteocytes. Furthermore, phosphorylated C-terminal Dmp1 was present in the Golgi of young osteocytes. Double-labeling immunoelectron microscopy revealed that phosphorylated C-terminal Dmp1 localized to the canalicular wall in mineralized bone. These findings suggest that C-terminal Dmp1 is phosphorylated within osteocytes and then secreted into the pericanalicular matrix of mineralized bone. Phosphorylated, negatively charged C-terminal Dmp1 in the pericanalicular matrix may play an important role in bone mineralization by recruiting calcium ions. |
---|---|
ISSN: | 0948-6143 1432-119X |
DOI: | 10.1007/s00418-016-1490-z |