Loading…

Biologically Analogous Calcium Phosphate Tubes from a Chemical Garden

Calcium phosphate (CaPO4) tubes with features comparable to mineralized biological microstructures, such as Haversian canals, were grown from a calcium gel/phosphate solution chemical garden system. A significant difference in gel mass in response to high and low solute phosphate equivalent environm...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2017-02, Vol.33 (8), p.2059-2067
Main Authors: Hughes, Erik A. B, Williams, Richard L, Cox, Sophie C, Grover, Liam M
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Calcium phosphate (CaPO4) tubes with features comparable to mineralized biological microstructures, such as Haversian canals, were grown from a calcium gel/phosphate solution chemical garden system. A significant difference in gel mass in response to high and low solute phosphate equivalent environments existed within 30 min of solution layering upon gel (p = 0.0067), suggesting that the nature of advective movement between gel and solution is dependent on the solution concentration. The transport of calcium cations (Ca2+) and phosphate anions (PO4 3–) was quantified and changes in pH were monitored to explain the preferential formation of tubes within a PO4 3– concentration range of 0.5–1.25 M. Ingress from the anionic solution phase into the gel followed by the liberation of Ca2+ ions from the gel was found to be essential for acquiring self-assembled tubular CaPO4 structures. Tube analysis by scanning electron microscopy (SEM), X-ray diffraction (XRD), and micro X-ray florescence (μ-XRF) revealed hydroxyapatite (HA, Ca10(PO4)6(OH)2) and dicalcium phosphate dihydrate (DCPD, CaHPO4·2H2O) phases organized in a hierarchical manner. Notably, the tubule diameters ranged from 100 to 150 μm, an ideal size for the permeation of vasculature in biological hard tissue.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.6b04574