Loading…

CFTR-dependent defect in alternatively-activated macrophages in cystic fibrosis

Abstract Background The role of the macrophages in cystic fibrosis (CF) lung disease has been poorly studied. We hypothesized that alternatively activated M2 macrophages are abnormal in CF lung disease. Methods Blood samples were collected from adults (n = 13) children (n = 27) with CF on admission...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cystic fibrosis 2017-07, Vol.16 (4), p.475-482
Main Authors: Tarique, Abdullah A, Sly, Peter D, Holt, Patrick G, Bosco, Anthony, Ware, Robert S, Logan, Jayden, Bell, Scott C, Wainwright, Claire E, Fantino, Emmanuelle
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background The role of the macrophages in cystic fibrosis (CF) lung disease has been poorly studied. We hypothesized that alternatively activated M2 macrophages are abnormal in CF lung disease. Methods Blood samples were collected from adults (n = 13) children (n = 27) with CF on admission for acute pulmonary exacerbation and when clinically stable. Monocytes were differentiated into macrophages and polarized into classical (M1) and alternatively-activated (M2) phenotypes, function determined ex-vivo and compared with healthy controls. Results In the absence of functional cystic fibrosis trans-membrane conductance regulator (CFTR), either naturally in patients with CF or induced with CFTR inhibitors, monocyte-derived macrophages do not respond to IL-13/IL-4, fail to polarize into M2s associated with a post-transcriptional failure to produce and express IL-13Rα1 on the macrophage surface Polarization to the M1 phenotype was unaffected. Conclusions CFTR-dependent imbalance of macrophage phenotypes and functions could contribute to the exaggerated inflammatory response seen in CF lung disease.
ISSN:1569-1993
1873-5010
DOI:10.1016/j.jcf.2017.03.011