Loading…

Size-dependent axial instability of microtubules surrounded by cytoplasm of a living cell based on nonlocal strain gradient elasticity theory

•Development an orthotropic size-dependent shell model for microtubules in a lining cell.•Prediction the size effects on axial instability of microtubules embedded in cytoplasm in a more comprehensive way.•Incorporating the both nonlocality and strain gradient size dependency simultaneously. Microtu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of theoretical biology 2017-06, Vol.422, p.59-71
Main Authors: Sahmani, S., Aghdam, M.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-372ad8897bf86a46aaeeebcc40fe9c0ef53e5baba476657e830b1b61811ba2c93
cites cdi_FETCH-LOGICAL-c356t-372ad8897bf86a46aaeeebcc40fe9c0ef53e5baba476657e830b1b61811ba2c93
container_end_page 71
container_issue
container_start_page 59
container_title Journal of theoretical biology
container_volume 422
creator Sahmani, S.
Aghdam, M.M.
description •Development an orthotropic size-dependent shell model for microtubules in a lining cell.•Prediction the size effects on axial instability of microtubules embedded in cytoplasm in a more comprehensive way.•Incorporating the both nonlocality and strain gradient size dependency simultaneously. Microtubules including tubulin heterodimers arranging in a parallel shape of cylindrical hollow plays an important role in the mechanical stiffness of a living cell. In the present study, the nonlocal strain gradient theory of elasticity including simultaneously the both nonlocality and strain gradient size dependency is put to use within the framework of a refined orthotropic shell theory with hyperbolic distribution of shear deformation to analyze the size-dependent buckling and postbuckling characteristics of microtubules embedded in cytoplasm under axial compressive load. The non-classical governing differential equations are deduced via boundary layer theory of shell buckling incorporating the nonlinear prebuckling deformation and microtubule-cytoplasm interaction in the living cell environment. Finally, with the aid of a two-stepped perturbation solution methodology, the explicit analytical expressions for nonlocal strain gradient stability paths of axially loaded microtubules are achieved. It is illustrated that by taking the nonlocal size effect into consideration, the critical buckling load of microtubule and its maximum deflection associated with the minimum postbuckling load decreases, while the strain gradient size dependency causes to increase them.
doi_str_mv 10.1016/j.jtbi.2017.04.012
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1891128780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519317301686</els_id><sourcerecordid>1891128780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-372ad8897bf86a46aaeeebcc40fe9c0ef53e5baba476657e830b1b61811ba2c93</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS0EoreFF2CBvGSTYDt_jsQGVQUqVWIBrK2xMym-cuyL7VSEd-CdcXQLS1az-c6ZmXMIecVZzRnv3x7rY9a2FowPNWtrxsUTcuBs7CrZtfwpOTAmRNXxsbkglykdGWNj2_TPyYWQrRgkHw_k9xf7C6sJT-gn9JnCTwuOWp8yaOts3miY6WJNDHnVq8NE0xpjWAs9Ub1Rs-VwcpCWnQPq7IP199Sgc1RDKkzw1Afvgim2KUewnt5HmOy-DIswW7Nvyd8xxO0FeTaDS_jycV6Rbx9uvl5_qu4-f7y9fn9Xmabrc9UMAiYpx0HPsoe2B0BEbUzLZhwNw7lrsNOgoR36vhtQNkxz3XPJuQZhxuaKvDn7nmL4sWLKarFpPxo8hjUpLkfOhRwkK6g4oyWClCLO6hTtAnFTnKm9BnVUew1qr0GxVpUaiuj1o_-qF5z-Sf7mXoB3ZwDLlw8Wo0qmRGJwshFNVlOw__P_A-aqnZc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891128780</pqid></control><display><type>article</type><title>Size-dependent axial instability of microtubules surrounded by cytoplasm of a living cell based on nonlocal strain gradient elasticity theory</title><source>ScienceDirect Journals</source><creator>Sahmani, S. ; Aghdam, M.M.</creator><creatorcontrib>Sahmani, S. ; Aghdam, M.M.</creatorcontrib><description>•Development an orthotropic size-dependent shell model for microtubules in a lining cell.•Prediction the size effects on axial instability of microtubules embedded in cytoplasm in a more comprehensive way.•Incorporating the both nonlocality and strain gradient size dependency simultaneously. Microtubules including tubulin heterodimers arranging in a parallel shape of cylindrical hollow plays an important role in the mechanical stiffness of a living cell. In the present study, the nonlocal strain gradient theory of elasticity including simultaneously the both nonlocality and strain gradient size dependency is put to use within the framework of a refined orthotropic shell theory with hyperbolic distribution of shear deformation to analyze the size-dependent buckling and postbuckling characteristics of microtubules embedded in cytoplasm under axial compressive load. The non-classical governing differential equations are deduced via boundary layer theory of shell buckling incorporating the nonlinear prebuckling deformation and microtubule-cytoplasm interaction in the living cell environment. Finally, with the aid of a two-stepped perturbation solution methodology, the explicit analytical expressions for nonlocal strain gradient stability paths of axially loaded microtubules are achieved. It is illustrated that by taking the nonlocal size effect into consideration, the critical buckling load of microtubule and its maximum deflection associated with the minimum postbuckling load decreases, while the strain gradient size dependency causes to increase them.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2017.04.012</identifier><identifier>PMID: 28427819</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Cell nanomechanics ; Cytoplasm ; Cytoplasm - metabolism ; Humans ; Microtubules ; Microtubules - metabolism ; Models, Biological ; Nonlocal strain gradient elasticity ; Size effects ; Tubulin - metabolism</subject><ispartof>Journal of theoretical biology, 2017-06, Vol.422, p.59-71</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-372ad8897bf86a46aaeeebcc40fe9c0ef53e5baba476657e830b1b61811ba2c93</citedby><cites>FETCH-LOGICAL-c356t-372ad8897bf86a46aaeeebcc40fe9c0ef53e5baba476657e830b1b61811ba2c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28427819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sahmani, S.</creatorcontrib><creatorcontrib>Aghdam, M.M.</creatorcontrib><title>Size-dependent axial instability of microtubules surrounded by cytoplasm of a living cell based on nonlocal strain gradient elasticity theory</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>•Development an orthotropic size-dependent shell model for microtubules in a lining cell.•Prediction the size effects on axial instability of microtubules embedded in cytoplasm in a more comprehensive way.•Incorporating the both nonlocality and strain gradient size dependency simultaneously. Microtubules including tubulin heterodimers arranging in a parallel shape of cylindrical hollow plays an important role in the mechanical stiffness of a living cell. In the present study, the nonlocal strain gradient theory of elasticity including simultaneously the both nonlocality and strain gradient size dependency is put to use within the framework of a refined orthotropic shell theory with hyperbolic distribution of shear deformation to analyze the size-dependent buckling and postbuckling characteristics of microtubules embedded in cytoplasm under axial compressive load. The non-classical governing differential equations are deduced via boundary layer theory of shell buckling incorporating the nonlinear prebuckling deformation and microtubule-cytoplasm interaction in the living cell environment. Finally, with the aid of a two-stepped perturbation solution methodology, the explicit analytical expressions for nonlocal strain gradient stability paths of axially loaded microtubules are achieved. It is illustrated that by taking the nonlocal size effect into consideration, the critical buckling load of microtubule and its maximum deflection associated with the minimum postbuckling load decreases, while the strain gradient size dependency causes to increase them.</description><subject>Animals</subject><subject>Cell nanomechanics</subject><subject>Cytoplasm</subject><subject>Cytoplasm - metabolism</subject><subject>Humans</subject><subject>Microtubules</subject><subject>Microtubules - metabolism</subject><subject>Models, Biological</subject><subject>Nonlocal strain gradient elasticity</subject><subject>Size effects</subject><subject>Tubulin - metabolism</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQhS0EoreFF2CBvGSTYDt_jsQGVQUqVWIBrK2xMym-cuyL7VSEd-CdcXQLS1az-c6ZmXMIecVZzRnv3x7rY9a2FowPNWtrxsUTcuBs7CrZtfwpOTAmRNXxsbkglykdGWNj2_TPyYWQrRgkHw_k9xf7C6sJT-gn9JnCTwuOWp8yaOts3miY6WJNDHnVq8NE0xpjWAs9Ub1Rs-VwcpCWnQPq7IP199Sgc1RDKkzw1Afvgim2KUewnt5HmOy-DIswW7Nvyd8xxO0FeTaDS_jycV6Rbx9uvl5_qu4-f7y9fn9Xmabrc9UMAiYpx0HPsoe2B0BEbUzLZhwNw7lrsNOgoR36vhtQNkxz3XPJuQZhxuaKvDn7nmL4sWLKarFpPxo8hjUpLkfOhRwkK6g4oyWClCLO6hTtAnFTnKm9BnVUew1qr0GxVpUaiuj1o_-qF5z-Sf7mXoB3ZwDLlw8Wo0qmRGJwshFNVlOw__P_A-aqnZc</recordid><startdate>20170607</startdate><enddate>20170607</enddate><creator>Sahmani, S.</creator><creator>Aghdam, M.M.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170607</creationdate><title>Size-dependent axial instability of microtubules surrounded by cytoplasm of a living cell based on nonlocal strain gradient elasticity theory</title><author>Sahmani, S. ; Aghdam, M.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-372ad8897bf86a46aaeeebcc40fe9c0ef53e5baba476657e830b1b61811ba2c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Cell nanomechanics</topic><topic>Cytoplasm</topic><topic>Cytoplasm - metabolism</topic><topic>Humans</topic><topic>Microtubules</topic><topic>Microtubules - metabolism</topic><topic>Models, Biological</topic><topic>Nonlocal strain gradient elasticity</topic><topic>Size effects</topic><topic>Tubulin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahmani, S.</creatorcontrib><creatorcontrib>Aghdam, M.M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahmani, S.</au><au>Aghdam, M.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size-dependent axial instability of microtubules surrounded by cytoplasm of a living cell based on nonlocal strain gradient elasticity theory</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2017-06-07</date><risdate>2017</risdate><volume>422</volume><spage>59</spage><epage>71</epage><pages>59-71</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>•Development an orthotropic size-dependent shell model for microtubules in a lining cell.•Prediction the size effects on axial instability of microtubules embedded in cytoplasm in a more comprehensive way.•Incorporating the both nonlocality and strain gradient size dependency simultaneously. Microtubules including tubulin heterodimers arranging in a parallel shape of cylindrical hollow plays an important role in the mechanical stiffness of a living cell. In the present study, the nonlocal strain gradient theory of elasticity including simultaneously the both nonlocality and strain gradient size dependency is put to use within the framework of a refined orthotropic shell theory with hyperbolic distribution of shear deformation to analyze the size-dependent buckling and postbuckling characteristics of microtubules embedded in cytoplasm under axial compressive load. The non-classical governing differential equations are deduced via boundary layer theory of shell buckling incorporating the nonlinear prebuckling deformation and microtubule-cytoplasm interaction in the living cell environment. Finally, with the aid of a two-stepped perturbation solution methodology, the explicit analytical expressions for nonlocal strain gradient stability paths of axially loaded microtubules are achieved. It is illustrated that by taking the nonlocal size effect into consideration, the critical buckling load of microtubule and its maximum deflection associated with the minimum postbuckling load decreases, while the strain gradient size dependency causes to increase them.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>28427819</pmid><doi>10.1016/j.jtbi.2017.04.012</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2017-06, Vol.422, p.59-71
issn 0022-5193
1095-8541
language eng
recordid cdi_proquest_miscellaneous_1891128780
source ScienceDirect Journals
subjects Animals
Cell nanomechanics
Cytoplasm
Cytoplasm - metabolism
Humans
Microtubules
Microtubules - metabolism
Models, Biological
Nonlocal strain gradient elasticity
Size effects
Tubulin - metabolism
title Size-dependent axial instability of microtubules surrounded by cytoplasm of a living cell based on nonlocal strain gradient elasticity theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size-dependent%20axial%20instability%20of%20microtubules%20surrounded%20by%20cytoplasm%20of%20a%20living%20cell%20based%20on%20nonlocal%20strain%20gradient%20elasticity%20theory&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Sahmani,%20S.&rft.date=2017-06-07&rft.volume=422&rft.spage=59&rft.epage=71&rft.pages=59-71&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2017.04.012&rft_dat=%3Cproquest_cross%3E1891128780%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-372ad8897bf86a46aaeeebcc40fe9c0ef53e5baba476657e830b1b61811ba2c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1891128780&rft_id=info:pmid/28427819&rfr_iscdi=true