Loading…
Compositional differences among female-associated and embryo-associated microbiota of the viviparous Pacific Beetle cockroach, Diploptera punctata
Abstract All cockroach species, except one, harbor the endosymbiont Blattabacterium, transmitted from females to embryos. Adult cockroaches acquire non-Blattabacterium bacteria as part of their gut microbiota over time, but our knowledge of the possible transmission of these non-Blattabacterium bact...
Saved in:
Published in: | FEMS microbiology ecology 2017-06, Vol.93 (6), p.1 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
All cockroach species, except one, harbor the endosymbiont Blattabacterium, transmitted from females to embryos. Adult cockroaches acquire non-Blattabacterium bacteria as part of their gut microbiota over time, but our knowledge of the possible transmission of these non-Blattabacterium bacteria from females to embryos is rudimentary. We characterized the gut microbiota of gravid viviparous Diploptera punctata females and the non-Blattabacterium microbiota of associated developing embryos, as well as the gut microbiota of non-gravid females, and the microbiota of orphan embryos (females not included), following high-throughput sequencing of the 16S rRNA gene to assess bacterial transference. We determined significant differences in community composition between gravid females and associated embryos and overall greater similarity in community composition among embryos than adult females. Results suggest various routes of transference of bacteria from females or the environment to embryos. The bacterial families Halomonadaceae and Shewanellaceae were more abundant in embryos than in gravid females. The functional relevance of these families remains to be elucidated, but provisioning of amino acids deficient in the brood sac secretion is a possibility. Overall, our results highlight the need for further studies investigating the uptake and selective screening of microbes by D. punctata embryos, as well as their functions.
Diploptera punctata females and their corresponding developing embryos differ in microbiota composition. |
---|---|
ISSN: | 1574-6941 0168-6496 1574-6941 |
DOI: | 10.1093/femsec/fix052 |