Loading…
The Relationship between Organic Loading and Effects on Fish Reproduction for Pulp Mill Effluents across Canada
This study builds upon the work of a multiagency consortium tasked with determining cost-effective solutions for the effects of pulp mill effluents on fish reproduction. A laboratory fathead minnow egg production test and chemical characterization tools were used to benchmark 81 effluents from 20 mi...
Saved in:
Published in: | Environmental science & technology 2017-03, Vol.51 (6), p.3499-3507 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study builds upon the work of a multiagency consortium tasked with determining cost-effective solutions for the effects of pulp mill effluents on fish reproduction. A laboratory fathead minnow egg production test and chemical characterization tools were used to benchmark 81 effluents from 20 mills across Canada, representing the major pulping, bleaching, and effluent treatment technologies. For Kraft and mechanical pulp mills, effluents containing less than 20 mg/L BOD5 were found to have the greatest probability of having no effects. Organic loading, expressed as the total detected solvent-extractable components by gas chromatography/mass spectrometry (GC/MS), also correlated with decreased egg laying. Exceptions were found for specific Kraft, mechanical, and sulfite mills, suggesting yet unidentified causative agents are involved. Recycled fiber mill effluents, tested for the first time, were found to have little potential for reproductive effects despite large variations in BOD5 and GC/MS profiles. Effluent treatment systems across all production types were generally efficient, achieving a combined 82–98% BOD5 removal. Further reductions of final effluent organic loadings toward the target of less than 20 mg/L are recommended and can be realized through biotreatment optimization, the reduction of organic losses associated with production upsets and selecting best available technologies that reduce organic loadings to biotreatment. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.6b05572 |