Loading…

Dietary‐driven variation effects on the symbiotic flagellate protist communities of the subterranean termite Reticulitermes grassei Clément

The ability of subterranean termites to digest lignocellulose relies not only on their digestive tract physiology, but also on the symbiotic relationships established with flagellate protists and bacteria. The objective of this work was to test the possible effect of different cellulose‐based diets...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied entomology (1986) 2017-05, Vol.141 (4), p.300-307
Main Authors: Duarte, S., Duarte, M., Borges, P. A. V., Nunes, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3301-9bdc16049c709e14c7fb7d38ddf10400f5bd694f01366ad5c3e35f546b5977893
cites cdi_FETCH-LOGICAL-c3301-9bdc16049c709e14c7fb7d38ddf10400f5bd694f01366ad5c3e35f546b5977893
container_end_page 307
container_issue 4
container_start_page 300
container_title Journal of applied entomology (1986)
container_volume 141
creator Duarte, S.
Duarte, M.
Borges, P. A. V.
Nunes, L.
description The ability of subterranean termites to digest lignocellulose relies not only on their digestive tract physiology, but also on the symbiotic relationships established with flagellate protists and bacteria. The objective of this work was to test the possible effect of different cellulose‐based diets on the community structure (species richness and other diversity metrics) of the flagellate protists of the subterranean termite Reticulitermes grassei. Termites belonging to the same colony were subjected to six different diets (natural diet, maritime pine wood, European beech, thermally modified European beech, cellulose powder and starvation), and their flagellate protist community was evaluated after the trials. All non‐treated sound woods produced similar flagellate protist communities that were more diverse and of high evenness (low dominance). On the contrary, flagellate protist communities from cellulose‐fed termites and starving termites were considered to be significantly different from all non‐treated woods; they were less diverse and some morphotypes became dominant as a consequence of flagellate protist communities having suffered major adaptations to these diets. The flagellate protist communities of untreated beech and thermally modified beech‐fed termites were considered to be significantly different in terms of abundance and morphotype diversity. This may be caused by a decrease in lignocellulose quality available for termites and from an interference of thermally treated wood with the chemical stability of the termite hindgut. Our study suggests that as a consequence of the strong division of labour among these protists to accomplish the intricate process of lignocellulose digestion, termite symbiotic flagellate protist communities are a dynamic assemblage able to adapt to different conditions and diets. This study is important for the community‐level alteration approach, and it is the first study to investigate the effects of thermally modified wood on the flagellate protist communities of subterranean termites.
doi_str_mv 10.1111/jen.12331
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1891881421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321672757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3301-9bdc16049c709e14c7fb7d38ddf10400f5bd694f01366ad5c3e35f546b5977893</originalsourceid><addsrcrecordid>eNp10UtOHDEQBmArClImkEVu0BIbWPRM1dj98BINA0mEQEJk3XK7y8SjfoDtBs0uJ0Bcg3NwE04ST5pVpHjjhz7_KrsY-4owxzgWG-rnuOQcP7AZCi5TEFh-ZDOQHNMliPIT--z9BgBzkcGMPZ1aCspt334_N84-UJ88KGdVsEOfkDGkg0_iMvyixG-72g7B6sS06pbaVgVK7lw88SHRQ9eNvQ2WojeTH-tAzqmeVAwg19norykGjK3d7SO9dcp7ssmqfX3pqA8HbM-o1tOX93mf_Txb36y-pRdX599XJxep5hwwlXWjMQchdQGSUOjC1EXDy6YxCALAZHWTS2EAeZ6rJtOceGYykdeZLIpS8n12NOXG-u9H8qHqrNe7N_U0jL7CUmJZolhipIf_0M0wuj5WF1VZIMAyy6I6npR2g_eOTHXnbBc_tkKodp2pYmeqv52JdjHZR9vS9v-w-rG-nG78AU3plAU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1887100255</pqid></control><display><type>article</type><title>Dietary‐driven variation effects on the symbiotic flagellate protist communities of the subterranean termite Reticulitermes grassei Clément</title><source>Wiley</source><creator>Duarte, S. ; Duarte, M. ; Borges, P. A. V. ; Nunes, L.</creator><creatorcontrib>Duarte, S. ; Duarte, M. ; Borges, P. A. V. ; Nunes, L.</creatorcontrib><description>The ability of subterranean termites to digest lignocellulose relies not only on their digestive tract physiology, but also on the symbiotic relationships established with flagellate protists and bacteria. The objective of this work was to test the possible effect of different cellulose‐based diets on the community structure (species richness and other diversity metrics) of the flagellate protists of the subterranean termite Reticulitermes grassei. Termites belonging to the same colony were subjected to six different diets (natural diet, maritime pine wood, European beech, thermally modified European beech, cellulose powder and starvation), and their flagellate protist community was evaluated after the trials. All non‐treated sound woods produced similar flagellate protist communities that were more diverse and of high evenness (low dominance). On the contrary, flagellate protist communities from cellulose‐fed termites and starving termites were considered to be significantly different from all non‐treated woods; they were less diverse and some morphotypes became dominant as a consequence of flagellate protist communities having suffered major adaptations to these diets. The flagellate protist communities of untreated beech and thermally modified beech‐fed termites were considered to be significantly different in terms of abundance and morphotype diversity. This may be caused by a decrease in lignocellulose quality available for termites and from an interference of thermally treated wood with the chemical stability of the termite hindgut. Our study suggests that as a consequence of the strong division of labour among these protists to accomplish the intricate process of lignocellulose digestion, termite symbiotic flagellate protist communities are a dynamic assemblage able to adapt to different conditions and diets. This study is important for the community‐level alteration approach, and it is the first study to investigate the effects of thermally modified wood on the flagellate protist communities of subterranean termites.</description><identifier>ISSN: 0931-2048</identifier><identifier>EISSN: 1439-0418</identifier><identifier>DOI: 10.1111/jen.12331</identifier><language>eng</language><publisher>Berlin: Wiley Subscription Services, Inc</publisher><subject>Cellulose ; digestion ; Isoptera ; Lignocellulose ; Reticulitermes ; subterranean termites ; symbiotic flagellate protists ; Termites ; thermally modified wood</subject><ispartof>Journal of applied entomology (1986), 2017-05, Vol.141 (4), p.300-307</ispartof><rights>2016 Blackwell Verlag GmbH</rights><rights>Copyright © 2017 Blackwell Verlag GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3301-9bdc16049c709e14c7fb7d38ddf10400f5bd694f01366ad5c3e35f546b5977893</citedby><cites>FETCH-LOGICAL-c3301-9bdc16049c709e14c7fb7d38ddf10400f5bd694f01366ad5c3e35f546b5977893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Duarte, S.</creatorcontrib><creatorcontrib>Duarte, M.</creatorcontrib><creatorcontrib>Borges, P. A. V.</creatorcontrib><creatorcontrib>Nunes, L.</creatorcontrib><title>Dietary‐driven variation effects on the symbiotic flagellate protist communities of the subterranean termite Reticulitermes grassei Clément</title><title>Journal of applied entomology (1986)</title><description>The ability of subterranean termites to digest lignocellulose relies not only on their digestive tract physiology, but also on the symbiotic relationships established with flagellate protists and bacteria. The objective of this work was to test the possible effect of different cellulose‐based diets on the community structure (species richness and other diversity metrics) of the flagellate protists of the subterranean termite Reticulitermes grassei. Termites belonging to the same colony were subjected to six different diets (natural diet, maritime pine wood, European beech, thermally modified European beech, cellulose powder and starvation), and their flagellate protist community was evaluated after the trials. All non‐treated sound woods produced similar flagellate protist communities that were more diverse and of high evenness (low dominance). On the contrary, flagellate protist communities from cellulose‐fed termites and starving termites were considered to be significantly different from all non‐treated woods; they were less diverse and some morphotypes became dominant as a consequence of flagellate protist communities having suffered major adaptations to these diets. The flagellate protist communities of untreated beech and thermally modified beech‐fed termites were considered to be significantly different in terms of abundance and morphotype diversity. This may be caused by a decrease in lignocellulose quality available for termites and from an interference of thermally treated wood with the chemical stability of the termite hindgut. Our study suggests that as a consequence of the strong division of labour among these protists to accomplish the intricate process of lignocellulose digestion, termite symbiotic flagellate protist communities are a dynamic assemblage able to adapt to different conditions and diets. This study is important for the community‐level alteration approach, and it is the first study to investigate the effects of thermally modified wood on the flagellate protist communities of subterranean termites.</description><subject>Cellulose</subject><subject>digestion</subject><subject>Isoptera</subject><subject>Lignocellulose</subject><subject>Reticulitermes</subject><subject>subterranean termites</subject><subject>symbiotic flagellate protists</subject><subject>Termites</subject><subject>thermally modified wood</subject><issn>0931-2048</issn><issn>1439-0418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10UtOHDEQBmArClImkEVu0BIbWPRM1dj98BINA0mEQEJk3XK7y8SjfoDtBs0uJ0Bcg3NwE04ST5pVpHjjhz7_KrsY-4owxzgWG-rnuOQcP7AZCi5TEFh-ZDOQHNMliPIT--z9BgBzkcGMPZ1aCspt334_N84-UJ88KGdVsEOfkDGkg0_iMvyixG-72g7B6sS06pbaVgVK7lw88SHRQ9eNvQ2WojeTH-tAzqmeVAwg19norykGjK3d7SO9dcp7ssmqfX3pqA8HbM-o1tOX93mf_Txb36y-pRdX599XJxep5hwwlXWjMQchdQGSUOjC1EXDy6YxCALAZHWTS2EAeZ6rJtOceGYykdeZLIpS8n12NOXG-u9H8qHqrNe7N_U0jL7CUmJZolhipIf_0M0wuj5WF1VZIMAyy6I6npR2g_eOTHXnbBc_tkKodp2pYmeqv52JdjHZR9vS9v-w-rG-nG78AU3plAU</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Duarte, S.</creator><creator>Duarte, M.</creator><creator>Borges, P. A. V.</creator><creator>Nunes, L.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201705</creationdate><title>Dietary‐driven variation effects on the symbiotic flagellate protist communities of the subterranean termite Reticulitermes grassei Clément</title><author>Duarte, S. ; Duarte, M. ; Borges, P. A. V. ; Nunes, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3301-9bdc16049c709e14c7fb7d38ddf10400f5bd694f01366ad5c3e35f546b5977893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cellulose</topic><topic>digestion</topic><topic>Isoptera</topic><topic>Lignocellulose</topic><topic>Reticulitermes</topic><topic>subterranean termites</topic><topic>symbiotic flagellate protists</topic><topic>Termites</topic><topic>thermally modified wood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duarte, S.</creatorcontrib><creatorcontrib>Duarte, M.</creatorcontrib><creatorcontrib>Borges, P. A. V.</creatorcontrib><creatorcontrib>Nunes, L.</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of applied entomology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duarte, S.</au><au>Duarte, M.</au><au>Borges, P. A. V.</au><au>Nunes, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dietary‐driven variation effects on the symbiotic flagellate protist communities of the subterranean termite Reticulitermes grassei Clément</atitle><jtitle>Journal of applied entomology (1986)</jtitle><date>2017-05</date><risdate>2017</risdate><volume>141</volume><issue>4</issue><spage>300</spage><epage>307</epage><pages>300-307</pages><issn>0931-2048</issn><eissn>1439-0418</eissn><abstract>The ability of subterranean termites to digest lignocellulose relies not only on their digestive tract physiology, but also on the symbiotic relationships established with flagellate protists and bacteria. The objective of this work was to test the possible effect of different cellulose‐based diets on the community structure (species richness and other diversity metrics) of the flagellate protists of the subterranean termite Reticulitermes grassei. Termites belonging to the same colony were subjected to six different diets (natural diet, maritime pine wood, European beech, thermally modified European beech, cellulose powder and starvation), and their flagellate protist community was evaluated after the trials. All non‐treated sound woods produced similar flagellate protist communities that were more diverse and of high evenness (low dominance). On the contrary, flagellate protist communities from cellulose‐fed termites and starving termites were considered to be significantly different from all non‐treated woods; they were less diverse and some morphotypes became dominant as a consequence of flagellate protist communities having suffered major adaptations to these diets. The flagellate protist communities of untreated beech and thermally modified beech‐fed termites were considered to be significantly different in terms of abundance and morphotype diversity. This may be caused by a decrease in lignocellulose quality available for termites and from an interference of thermally treated wood with the chemical stability of the termite hindgut. Our study suggests that as a consequence of the strong division of labour among these protists to accomplish the intricate process of lignocellulose digestion, termite symbiotic flagellate protist communities are a dynamic assemblage able to adapt to different conditions and diets. This study is important for the community‐level alteration approach, and it is the first study to investigate the effects of thermally modified wood on the flagellate protist communities of subterranean termites.</abstract><cop>Berlin</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jen.12331</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0931-2048
ispartof Journal of applied entomology (1986), 2017-05, Vol.141 (4), p.300-307
issn 0931-2048
1439-0418
language eng
recordid cdi_proquest_miscellaneous_1891881421
source Wiley
subjects Cellulose
digestion
Isoptera
Lignocellulose
Reticulitermes
subterranean termites
symbiotic flagellate protists
Termites
thermally modified wood
title Dietary‐driven variation effects on the symbiotic flagellate protist communities of the subterranean termite Reticulitermes grassei Clément
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dietary%E2%80%90driven%20variation%20effects%20on%20the%20symbiotic%20flagellate%20protist%20communities%20of%20the%20subterranean%20termite%20Reticulitermes%20grassei%20Cl%C3%A9ment&rft.jtitle=Journal%20of%20applied%20entomology%20(1986)&rft.au=Duarte,%20S.&rft.date=2017-05&rft.volume=141&rft.issue=4&rft.spage=300&rft.epage=307&rft.pages=300-307&rft.issn=0931-2048&rft.eissn=1439-0418&rft_id=info:doi/10.1111/jen.12331&rft_dat=%3Cproquest_cross%3E4321672757%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3301-9bdc16049c709e14c7fb7d38ddf10400f5bd694f01366ad5c3e35f546b5977893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1887100255&rft_id=info:pmid/&rfr_iscdi=true