Loading…
CD38 positively regulates postnatal development of astrocytes cell‐autonomously and oligodendrocytes non‐cell‐autonomously
Glial development is critical for the function of the central nervous system. CD38 is a multifunctional molecule with ADP‐ribosyl cyclase activity. While critical roles of CD38 in the adult brain such as oxytocin release and social behavior have been reported, those in the developing brain remain la...
Saved in:
Published in: | Glia 2017-06, Vol.65 (6), p.974-989 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 989 |
container_issue | 6 |
container_start_page | 974 |
container_title | Glia |
container_volume | 65 |
creator | Hattori, Tsuyoshi Kaji, Minoru Ishii, Hiroshi Jureepon, Roboon Takarada‐Iemata, Mika Minh Ta, Hieu Manh Le, Thuong Konno, Ayumu Hirai, Hirokazu Shiraishi, Yoshitake Ozaki, Noriyuki Yamamoto, Yasuhiko Okamoto, Hiroshi Yokoyama, Shigeru Higashida, Haruhiro Kitao, Yasuko Hori, Osamu |
description | Glial development is critical for the function of the central nervous system. CD38 is a multifunctional molecule with ADP‐ribosyl cyclase activity. While critical roles of CD38 in the adult brain such as oxytocin release and social behavior have been reported, those in the developing brain remain largely unknown. Here we demonstrate that deletion of Cd38 leads to impaired development of astrocytes and oligodendrocytes in mice. CD38 is highly expressed in the developing brains between postnatal day 14 (P14) and day 28 (P28). In situ hybridization and FACS analysis revealed that CD38 is expressed predominantly in astrocytes in these periods. Analyses of the cortex of Cd38 knockout (Cd38−/−) mice revealed delayed development of astrocytes and subsequently delayed differentiation of oligodendrocytes (OLs) at postnatal stages. In vitro experiments using primary OL cultures, mixed glial cultures, and astrocytic conditioned medium showed that astrocytic CD38 regulates the development of astrocytes in a cell‐autonomous manner and the differentiation of OLs in a non‐cell‐autonomous manner. Further experiments revealed that connexin43 (Cx43) in astrocytes plays a promotive role for CD38‐mediated OL differentiation. Finally, increased levels of NAD+, caused by CD38 deficiency, are likely to be responsible for the suppression of astrocytic Cx43 expression and OL differentiation. Our data indicate that CD38 is a positive regulator of astrocyte and OL development.
Main Points
CD38‐deficient mice exhibit impaired development of astrocytes and oligodendrocytes.
CD38 increases astrocytic Cx43 expression by reducing NAD+ level.
Cx43 promotes astrocytic maturation and OL differentiation. |
doi_str_mv | 10.1002/glia.23139 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1891883783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891883783</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2449-87e16acd13d8f1996446f61f0b2e6fbb0ee442b678b533d21287b910202436cc3</originalsourceid><addsrcrecordid>eNqN0btOwzAUBmALgWi5LDwAisTCkuJjO449ogIFqRILzJGTOFUqxw5xAurWR-AZeRIcbgNiYPLlfDo6Rz9CJ4BngDG5WJlazQgFKnfQFLAUMQDlu2iKhWQxMAkTdOD9GmMIj3QfTYggMklSNkXb-RUVUet83dfP2myiTq8Go3rtx8_eql6ZqNSh5NpG2z5yVaR837liM5pCG_O2fVVD76xr3OBDB2XLyJl65Upty29onQ3uD36E9iplvD7-Og_R4831w_w2Xt4v7uaXy7gljMlYpBq4KkqgpahASs4YrzhUOCeaV3mOtWaM5DwVeUJpSYCINJeACSaM8qKgh-j8s2_buadB-z5raj_Oo6wOg2QgJAhBU0H_QdNUJAnlLNCzX3Tths6GRYISoaUUhAR1-qWGvNFl1nZ1o7pN9h1DAPAJXmqjNz91wNkYcDYGnH0EnC2Wd5cfN_oOO8edSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1888919822</pqid></control><display><type>article</type><title>CD38 positively regulates postnatal development of astrocytes cell‐autonomously and oligodendrocytes non‐cell‐autonomously</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Hattori, Tsuyoshi ; Kaji, Minoru ; Ishii, Hiroshi ; Jureepon, Roboon ; Takarada‐Iemata, Mika ; Minh Ta, Hieu ; Manh Le, Thuong ; Konno, Ayumu ; Hirai, Hirokazu ; Shiraishi, Yoshitake ; Ozaki, Noriyuki ; Yamamoto, Yasuhiko ; Okamoto, Hiroshi ; Yokoyama, Shigeru ; Higashida, Haruhiro ; Kitao, Yasuko ; Hori, Osamu</creator><creatorcontrib>Hattori, Tsuyoshi ; Kaji, Minoru ; Ishii, Hiroshi ; Jureepon, Roboon ; Takarada‐Iemata, Mika ; Minh Ta, Hieu ; Manh Le, Thuong ; Konno, Ayumu ; Hirai, Hirokazu ; Shiraishi, Yoshitake ; Ozaki, Noriyuki ; Yamamoto, Yasuhiko ; Okamoto, Hiroshi ; Yokoyama, Shigeru ; Higashida, Haruhiro ; Kitao, Yasuko ; Hori, Osamu</creatorcontrib><description>Glial development is critical for the function of the central nervous system. CD38 is a multifunctional molecule with ADP‐ribosyl cyclase activity. While critical roles of CD38 in the adult brain such as oxytocin release and social behavior have been reported, those in the developing brain remain largely unknown. Here we demonstrate that deletion of Cd38 leads to impaired development of astrocytes and oligodendrocytes in mice. CD38 is highly expressed in the developing brains between postnatal day 14 (P14) and day 28 (P28). In situ hybridization and FACS analysis revealed that CD38 is expressed predominantly in astrocytes in these periods. Analyses of the cortex of Cd38 knockout (Cd38−/−) mice revealed delayed development of astrocytes and subsequently delayed differentiation of oligodendrocytes (OLs) at postnatal stages. In vitro experiments using primary OL cultures, mixed glial cultures, and astrocytic conditioned medium showed that astrocytic CD38 regulates the development of astrocytes in a cell‐autonomous manner and the differentiation of OLs in a non‐cell‐autonomous manner. Further experiments revealed that connexin43 (Cx43) in astrocytes plays a promotive role for CD38‐mediated OL differentiation. Finally, increased levels of NAD+, caused by CD38 deficiency, are likely to be responsible for the suppression of astrocytic Cx43 expression and OL differentiation. Our data indicate that CD38 is a positive regulator of astrocyte and OL development.
Main Points
CD38‐deficient mice exhibit impaired development of astrocytes and oligodendrocytes.
CD38 increases astrocytic Cx43 expression by reducing NAD+ level.
Cx43 promotes astrocytic maturation and OL differentiation.</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.23139</identifier><identifier>PMID: 28295574</identifier><identifier>CODEN: GLIAEJ</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>ADP-ribosyl Cyclase - genetics ; ADP-ribosyl Cyclase - metabolism ; ADP-ribosyl Cyclase 1 - genetics ; ADP-ribosyl Cyclase 1 - metabolism ; Animals ; Astrocytes - cytology ; Astrocytes - metabolism ; autism ; Brain - cytology ; Brain - growth & development ; Brain - metabolism ; Cell Differentiation - physiology ; Cells, Cultured ; Coculture Techniques ; connexin 43 ; Connexin 43 - metabolism ; cortex ; Female ; hemichannel ; Male ; Membrane Glycoproteins - genetics ; Membrane Glycoproteins - metabolism ; Mice, Inbred ICR ; Mice, Knockout ; myelin ; NAD ; NAD - metabolism ; Oligodendroglia - cytology ; Oligodendroglia - metabolism ; Rats, Wistar</subject><ispartof>Glia, 2017-06, Vol.65 (6), p.974-989</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2210-0446 ; 0000-0002-8168-8710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28295574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hattori, Tsuyoshi</creatorcontrib><creatorcontrib>Kaji, Minoru</creatorcontrib><creatorcontrib>Ishii, Hiroshi</creatorcontrib><creatorcontrib>Jureepon, Roboon</creatorcontrib><creatorcontrib>Takarada‐Iemata, Mika</creatorcontrib><creatorcontrib>Minh Ta, Hieu</creatorcontrib><creatorcontrib>Manh Le, Thuong</creatorcontrib><creatorcontrib>Konno, Ayumu</creatorcontrib><creatorcontrib>Hirai, Hirokazu</creatorcontrib><creatorcontrib>Shiraishi, Yoshitake</creatorcontrib><creatorcontrib>Ozaki, Noriyuki</creatorcontrib><creatorcontrib>Yamamoto, Yasuhiko</creatorcontrib><creatorcontrib>Okamoto, Hiroshi</creatorcontrib><creatorcontrib>Yokoyama, Shigeru</creatorcontrib><creatorcontrib>Higashida, Haruhiro</creatorcontrib><creatorcontrib>Kitao, Yasuko</creatorcontrib><creatorcontrib>Hori, Osamu</creatorcontrib><title>CD38 positively regulates postnatal development of astrocytes cell‐autonomously and oligodendrocytes non‐cell‐autonomously</title><title>Glia</title><addtitle>Glia</addtitle><description>Glial development is critical for the function of the central nervous system. CD38 is a multifunctional molecule with ADP‐ribosyl cyclase activity. While critical roles of CD38 in the adult brain such as oxytocin release and social behavior have been reported, those in the developing brain remain largely unknown. Here we demonstrate that deletion of Cd38 leads to impaired development of astrocytes and oligodendrocytes in mice. CD38 is highly expressed in the developing brains between postnatal day 14 (P14) and day 28 (P28). In situ hybridization and FACS analysis revealed that CD38 is expressed predominantly in astrocytes in these periods. Analyses of the cortex of Cd38 knockout (Cd38−/−) mice revealed delayed development of astrocytes and subsequently delayed differentiation of oligodendrocytes (OLs) at postnatal stages. In vitro experiments using primary OL cultures, mixed glial cultures, and astrocytic conditioned medium showed that astrocytic CD38 regulates the development of astrocytes in a cell‐autonomous manner and the differentiation of OLs in a non‐cell‐autonomous manner. Further experiments revealed that connexin43 (Cx43) in astrocytes plays a promotive role for CD38‐mediated OL differentiation. Finally, increased levels of NAD+, caused by CD38 deficiency, are likely to be responsible for the suppression of astrocytic Cx43 expression and OL differentiation. Our data indicate that CD38 is a positive regulator of astrocyte and OL development.
Main Points
CD38‐deficient mice exhibit impaired development of astrocytes and oligodendrocytes.
CD38 increases astrocytic Cx43 expression by reducing NAD+ level.
Cx43 promotes astrocytic maturation and OL differentiation.</description><subject>ADP-ribosyl Cyclase - genetics</subject><subject>ADP-ribosyl Cyclase - metabolism</subject><subject>ADP-ribosyl Cyclase 1 - genetics</subject><subject>ADP-ribosyl Cyclase 1 - metabolism</subject><subject>Animals</subject><subject>Astrocytes - cytology</subject><subject>Astrocytes - metabolism</subject><subject>autism</subject><subject>Brain - cytology</subject><subject>Brain - growth & development</subject><subject>Brain - metabolism</subject><subject>Cell Differentiation - physiology</subject><subject>Cells, Cultured</subject><subject>Coculture Techniques</subject><subject>connexin 43</subject><subject>Connexin 43 - metabolism</subject><subject>cortex</subject><subject>Female</subject><subject>hemichannel</subject><subject>Male</subject><subject>Membrane Glycoproteins - genetics</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Mice, Inbred ICR</subject><subject>Mice, Knockout</subject><subject>myelin</subject><subject>NAD</subject><subject>NAD - metabolism</subject><subject>Oligodendroglia - cytology</subject><subject>Oligodendroglia - metabolism</subject><subject>Rats, Wistar</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqN0btOwzAUBmALgWi5LDwAisTCkuJjO449ogIFqRILzJGTOFUqxw5xAurWR-AZeRIcbgNiYPLlfDo6Rz9CJ4BngDG5WJlazQgFKnfQFLAUMQDlu2iKhWQxMAkTdOD9GmMIj3QfTYggMklSNkXb-RUVUet83dfP2myiTq8Go3rtx8_eql6ZqNSh5NpG2z5yVaR837liM5pCG_O2fVVD76xr3OBDB2XLyJl65Upty29onQ3uD36E9iplvD7-Og_R4831w_w2Xt4v7uaXy7gljMlYpBq4KkqgpahASs4YrzhUOCeaV3mOtWaM5DwVeUJpSYCINJeACSaM8qKgh-j8s2_buadB-z5raj_Oo6wOg2QgJAhBU0H_QdNUJAnlLNCzX3Tths6GRYISoaUUhAR1-qWGvNFl1nZ1o7pN9h1DAPAJXmqjNz91wNkYcDYGnH0EnC2Wd5cfN_oOO8edSg</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Hattori, Tsuyoshi</creator><creator>Kaji, Minoru</creator><creator>Ishii, Hiroshi</creator><creator>Jureepon, Roboon</creator><creator>Takarada‐Iemata, Mika</creator><creator>Minh Ta, Hieu</creator><creator>Manh Le, Thuong</creator><creator>Konno, Ayumu</creator><creator>Hirai, Hirokazu</creator><creator>Shiraishi, Yoshitake</creator><creator>Ozaki, Noriyuki</creator><creator>Yamamoto, Yasuhiko</creator><creator>Okamoto, Hiroshi</creator><creator>Yokoyama, Shigeru</creator><creator>Higashida, Haruhiro</creator><creator>Kitao, Yasuko</creator><creator>Hori, Osamu</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2210-0446</orcidid><orcidid>https://orcid.org/0000-0002-8168-8710</orcidid></search><sort><creationdate>201706</creationdate><title>CD38 positively regulates postnatal development of astrocytes cell‐autonomously and oligodendrocytes non‐cell‐autonomously</title><author>Hattori, Tsuyoshi ; Kaji, Minoru ; Ishii, Hiroshi ; Jureepon, Roboon ; Takarada‐Iemata, Mika ; Minh Ta, Hieu ; Manh Le, Thuong ; Konno, Ayumu ; Hirai, Hirokazu ; Shiraishi, Yoshitake ; Ozaki, Noriyuki ; Yamamoto, Yasuhiko ; Okamoto, Hiroshi ; Yokoyama, Shigeru ; Higashida, Haruhiro ; Kitao, Yasuko ; Hori, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2449-87e16acd13d8f1996446f61f0b2e6fbb0ee442b678b533d21287b910202436cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ADP-ribosyl Cyclase - genetics</topic><topic>ADP-ribosyl Cyclase - metabolism</topic><topic>ADP-ribosyl Cyclase 1 - genetics</topic><topic>ADP-ribosyl Cyclase 1 - metabolism</topic><topic>Animals</topic><topic>Astrocytes - cytology</topic><topic>Astrocytes - metabolism</topic><topic>autism</topic><topic>Brain - cytology</topic><topic>Brain - growth & development</topic><topic>Brain - metabolism</topic><topic>Cell Differentiation - physiology</topic><topic>Cells, Cultured</topic><topic>Coculture Techniques</topic><topic>connexin 43</topic><topic>Connexin 43 - metabolism</topic><topic>cortex</topic><topic>Female</topic><topic>hemichannel</topic><topic>Male</topic><topic>Membrane Glycoproteins - genetics</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Mice, Inbred ICR</topic><topic>Mice, Knockout</topic><topic>myelin</topic><topic>NAD</topic><topic>NAD - metabolism</topic><topic>Oligodendroglia - cytology</topic><topic>Oligodendroglia - metabolism</topic><topic>Rats, Wistar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hattori, Tsuyoshi</creatorcontrib><creatorcontrib>Kaji, Minoru</creatorcontrib><creatorcontrib>Ishii, Hiroshi</creatorcontrib><creatorcontrib>Jureepon, Roboon</creatorcontrib><creatorcontrib>Takarada‐Iemata, Mika</creatorcontrib><creatorcontrib>Minh Ta, Hieu</creatorcontrib><creatorcontrib>Manh Le, Thuong</creatorcontrib><creatorcontrib>Konno, Ayumu</creatorcontrib><creatorcontrib>Hirai, Hirokazu</creatorcontrib><creatorcontrib>Shiraishi, Yoshitake</creatorcontrib><creatorcontrib>Ozaki, Noriyuki</creatorcontrib><creatorcontrib>Yamamoto, Yasuhiko</creatorcontrib><creatorcontrib>Okamoto, Hiroshi</creatorcontrib><creatorcontrib>Yokoyama, Shigeru</creatorcontrib><creatorcontrib>Higashida, Haruhiro</creatorcontrib><creatorcontrib>Kitao, Yasuko</creatorcontrib><creatorcontrib>Hori, Osamu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hattori, Tsuyoshi</au><au>Kaji, Minoru</au><au>Ishii, Hiroshi</au><au>Jureepon, Roboon</au><au>Takarada‐Iemata, Mika</au><au>Minh Ta, Hieu</au><au>Manh Le, Thuong</au><au>Konno, Ayumu</au><au>Hirai, Hirokazu</au><au>Shiraishi, Yoshitake</au><au>Ozaki, Noriyuki</au><au>Yamamoto, Yasuhiko</au><au>Okamoto, Hiroshi</au><au>Yokoyama, Shigeru</au><au>Higashida, Haruhiro</au><au>Kitao, Yasuko</au><au>Hori, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CD38 positively regulates postnatal development of astrocytes cell‐autonomously and oligodendrocytes non‐cell‐autonomously</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2017-06</date><risdate>2017</risdate><volume>65</volume><issue>6</issue><spage>974</spage><epage>989</epage><pages>974-989</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><coden>GLIAEJ</coden><abstract>Glial development is critical for the function of the central nervous system. CD38 is a multifunctional molecule with ADP‐ribosyl cyclase activity. While critical roles of CD38 in the adult brain such as oxytocin release and social behavior have been reported, those in the developing brain remain largely unknown. Here we demonstrate that deletion of Cd38 leads to impaired development of astrocytes and oligodendrocytes in mice. CD38 is highly expressed in the developing brains between postnatal day 14 (P14) and day 28 (P28). In situ hybridization and FACS analysis revealed that CD38 is expressed predominantly in astrocytes in these periods. Analyses of the cortex of Cd38 knockout (Cd38−/−) mice revealed delayed development of astrocytes and subsequently delayed differentiation of oligodendrocytes (OLs) at postnatal stages. In vitro experiments using primary OL cultures, mixed glial cultures, and astrocytic conditioned medium showed that astrocytic CD38 regulates the development of astrocytes in a cell‐autonomous manner and the differentiation of OLs in a non‐cell‐autonomous manner. Further experiments revealed that connexin43 (Cx43) in astrocytes plays a promotive role for CD38‐mediated OL differentiation. Finally, increased levels of NAD+, caused by CD38 deficiency, are likely to be responsible for the suppression of astrocytic Cx43 expression and OL differentiation. Our data indicate that CD38 is a positive regulator of astrocyte and OL development.
Main Points
CD38‐deficient mice exhibit impaired development of astrocytes and oligodendrocytes.
CD38 increases astrocytic Cx43 expression by reducing NAD+ level.
Cx43 promotes astrocytic maturation and OL differentiation.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28295574</pmid><doi>10.1002/glia.23139</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2210-0446</orcidid><orcidid>https://orcid.org/0000-0002-8168-8710</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-1491 |
ispartof | Glia, 2017-06, Vol.65 (6), p.974-989 |
issn | 0894-1491 1098-1136 |
language | eng |
recordid | cdi_proquest_miscellaneous_1891883783 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | ADP-ribosyl Cyclase - genetics ADP-ribosyl Cyclase - metabolism ADP-ribosyl Cyclase 1 - genetics ADP-ribosyl Cyclase 1 - metabolism Animals Astrocytes - cytology Astrocytes - metabolism autism Brain - cytology Brain - growth & development Brain - metabolism Cell Differentiation - physiology Cells, Cultured Coculture Techniques connexin 43 Connexin 43 - metabolism cortex Female hemichannel Male Membrane Glycoproteins - genetics Membrane Glycoproteins - metabolism Mice, Inbred ICR Mice, Knockout myelin NAD NAD - metabolism Oligodendroglia - cytology Oligodendroglia - metabolism Rats, Wistar |
title | CD38 positively regulates postnatal development of astrocytes cell‐autonomously and oligodendrocytes non‐cell‐autonomously |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A15%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CD38%20positively%20regulates%20postnatal%20development%20of%20astrocytes%20cell%E2%80%90autonomously%20and%20oligodendrocytes%20non%E2%80%90cell%E2%80%90autonomously&rft.jtitle=Glia&rft.au=Hattori,%20Tsuyoshi&rft.date=2017-06&rft.volume=65&rft.issue=6&rft.spage=974&rft.epage=989&rft.pages=974-989&rft.issn=0894-1491&rft.eissn=1098-1136&rft.coden=GLIAEJ&rft_id=info:doi/10.1002/glia.23139&rft_dat=%3Cproquest_pubme%3E1891883783%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2449-87e16acd13d8f1996446f61f0b2e6fbb0ee442b678b533d21287b910202436cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1888919822&rft_id=info:pmid/28295574&rfr_iscdi=true |