Loading…

CD38 positively regulates postnatal development of astrocytes cell‐autonomously and oligodendrocytes non‐cell‐autonomously

Glial development is critical for the function of the central nervous system. CD38 is a multifunctional molecule with ADP‐ribosyl cyclase activity. While critical roles of CD38 in the adult brain such as oxytocin release and social behavior have been reported, those in the developing brain remain la...

Full description

Saved in:
Bibliographic Details
Published in:Glia 2017-06, Vol.65 (6), p.974-989
Main Authors: Hattori, Tsuyoshi, Kaji, Minoru, Ishii, Hiroshi, Jureepon, Roboon, Takarada‐Iemata, Mika, Minh Ta, Hieu, Manh Le, Thuong, Konno, Ayumu, Hirai, Hirokazu, Shiraishi, Yoshitake, Ozaki, Noriyuki, Yamamoto, Yasuhiko, Okamoto, Hiroshi, Yokoyama, Shigeru, Higashida, Haruhiro, Kitao, Yasuko, Hori, Osamu
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 989
container_issue 6
container_start_page 974
container_title Glia
container_volume 65
creator Hattori, Tsuyoshi
Kaji, Minoru
Ishii, Hiroshi
Jureepon, Roboon
Takarada‐Iemata, Mika
Minh Ta, Hieu
Manh Le, Thuong
Konno, Ayumu
Hirai, Hirokazu
Shiraishi, Yoshitake
Ozaki, Noriyuki
Yamamoto, Yasuhiko
Okamoto, Hiroshi
Yokoyama, Shigeru
Higashida, Haruhiro
Kitao, Yasuko
Hori, Osamu
description Glial development is critical for the function of the central nervous system. CD38 is a multifunctional molecule with ADP‐ribosyl cyclase activity. While critical roles of CD38 in the adult brain such as oxytocin release and social behavior have been reported, those in the developing brain remain largely unknown. Here we demonstrate that deletion of Cd38 leads to impaired development of astrocytes and oligodendrocytes in mice. CD38 is highly expressed in the developing brains between postnatal day 14 (P14) and day 28 (P28). In situ hybridization and FACS analysis revealed that CD38 is expressed predominantly in astrocytes in these periods. Analyses of the cortex of Cd38 knockout (Cd38−/−) mice revealed delayed development of astrocytes and subsequently delayed differentiation of oligodendrocytes (OLs) at postnatal stages. In vitro experiments using primary OL cultures, mixed glial cultures, and astrocytic conditioned medium showed that astrocytic CD38 regulates the development of astrocytes in a cell‐autonomous manner and the differentiation of OLs in a non‐cell‐autonomous manner. Further experiments revealed that connexin43 (Cx43) in astrocytes plays a promotive role for CD38‐mediated OL differentiation. Finally, increased levels of NAD+, caused by CD38 deficiency, are likely to be responsible for the suppression of astrocytic Cx43 expression and OL differentiation. Our data indicate that CD38 is a positive regulator of astrocyte and OL development. Main Points CD38‐deficient mice exhibit impaired development of astrocytes and oligodendrocytes. CD38 increases astrocytic Cx43 expression by reducing NAD+ level. Cx43 promotes astrocytic maturation and OL differentiation.
doi_str_mv 10.1002/glia.23139
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1891883783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891883783</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2449-87e16acd13d8f1996446f61f0b2e6fbb0ee442b678b533d21287b910202436cc3</originalsourceid><addsrcrecordid>eNqN0btOwzAUBmALgWi5LDwAisTCkuJjO449ogIFqRILzJGTOFUqxw5xAurWR-AZeRIcbgNiYPLlfDo6Rz9CJ4BngDG5WJlazQgFKnfQFLAUMQDlu2iKhWQxMAkTdOD9GmMIj3QfTYggMklSNkXb-RUVUet83dfP2myiTq8Go3rtx8_eql6ZqNSh5NpG2z5yVaR837liM5pCG_O2fVVD76xr3OBDB2XLyJl65Upty29onQ3uD36E9iplvD7-Og_R4831w_w2Xt4v7uaXy7gljMlYpBq4KkqgpahASs4YrzhUOCeaV3mOtWaM5DwVeUJpSYCINJeACSaM8qKgh-j8s2_buadB-z5raj_Oo6wOg2QgJAhBU0H_QdNUJAnlLNCzX3Tths6GRYISoaUUhAR1-qWGvNFl1nZ1o7pN9h1DAPAJXmqjNz91wNkYcDYGnH0EnC2Wd5cfN_oOO8edSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1888919822</pqid></control><display><type>article</type><title>CD38 positively regulates postnatal development of astrocytes cell‐autonomously and oligodendrocytes non‐cell‐autonomously</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Hattori, Tsuyoshi ; Kaji, Minoru ; Ishii, Hiroshi ; Jureepon, Roboon ; Takarada‐Iemata, Mika ; Minh Ta, Hieu ; Manh Le, Thuong ; Konno, Ayumu ; Hirai, Hirokazu ; Shiraishi, Yoshitake ; Ozaki, Noriyuki ; Yamamoto, Yasuhiko ; Okamoto, Hiroshi ; Yokoyama, Shigeru ; Higashida, Haruhiro ; Kitao, Yasuko ; Hori, Osamu</creator><creatorcontrib>Hattori, Tsuyoshi ; Kaji, Minoru ; Ishii, Hiroshi ; Jureepon, Roboon ; Takarada‐Iemata, Mika ; Minh Ta, Hieu ; Manh Le, Thuong ; Konno, Ayumu ; Hirai, Hirokazu ; Shiraishi, Yoshitake ; Ozaki, Noriyuki ; Yamamoto, Yasuhiko ; Okamoto, Hiroshi ; Yokoyama, Shigeru ; Higashida, Haruhiro ; Kitao, Yasuko ; Hori, Osamu</creatorcontrib><description>Glial development is critical for the function of the central nervous system. CD38 is a multifunctional molecule with ADP‐ribosyl cyclase activity. While critical roles of CD38 in the adult brain such as oxytocin release and social behavior have been reported, those in the developing brain remain largely unknown. Here we demonstrate that deletion of Cd38 leads to impaired development of astrocytes and oligodendrocytes in mice. CD38 is highly expressed in the developing brains between postnatal day 14 (P14) and day 28 (P28). In situ hybridization and FACS analysis revealed that CD38 is expressed predominantly in astrocytes in these periods. Analyses of the cortex of Cd38 knockout (Cd38−/−) mice revealed delayed development of astrocytes and subsequently delayed differentiation of oligodendrocytes (OLs) at postnatal stages. In vitro experiments using primary OL cultures, mixed glial cultures, and astrocytic conditioned medium showed that astrocytic CD38 regulates the development of astrocytes in a cell‐autonomous manner and the differentiation of OLs in a non‐cell‐autonomous manner. Further experiments revealed that connexin43 (Cx43) in astrocytes plays a promotive role for CD38‐mediated OL differentiation. Finally, increased levels of NAD+, caused by CD38 deficiency, are likely to be responsible for the suppression of astrocytic Cx43 expression and OL differentiation. Our data indicate that CD38 is a positive regulator of astrocyte and OL development. Main Points CD38‐deficient mice exhibit impaired development of astrocytes and oligodendrocytes. CD38 increases astrocytic Cx43 expression by reducing NAD+ level. Cx43 promotes astrocytic maturation and OL differentiation.</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.23139</identifier><identifier>PMID: 28295574</identifier><identifier>CODEN: GLIAEJ</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>ADP-ribosyl Cyclase - genetics ; ADP-ribosyl Cyclase - metabolism ; ADP-ribosyl Cyclase 1 - genetics ; ADP-ribosyl Cyclase 1 - metabolism ; Animals ; Astrocytes - cytology ; Astrocytes - metabolism ; autism ; Brain - cytology ; Brain - growth &amp; development ; Brain - metabolism ; Cell Differentiation - physiology ; Cells, Cultured ; Coculture Techniques ; connexin 43 ; Connexin 43 - metabolism ; cortex ; Female ; hemichannel ; Male ; Membrane Glycoproteins - genetics ; Membrane Glycoproteins - metabolism ; Mice, Inbred ICR ; Mice, Knockout ; myelin ; NAD ; NAD - metabolism ; Oligodendroglia - cytology ; Oligodendroglia - metabolism ; Rats, Wistar</subject><ispartof>Glia, 2017-06, Vol.65 (6), p.974-989</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2210-0446 ; 0000-0002-8168-8710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28295574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hattori, Tsuyoshi</creatorcontrib><creatorcontrib>Kaji, Minoru</creatorcontrib><creatorcontrib>Ishii, Hiroshi</creatorcontrib><creatorcontrib>Jureepon, Roboon</creatorcontrib><creatorcontrib>Takarada‐Iemata, Mika</creatorcontrib><creatorcontrib>Minh Ta, Hieu</creatorcontrib><creatorcontrib>Manh Le, Thuong</creatorcontrib><creatorcontrib>Konno, Ayumu</creatorcontrib><creatorcontrib>Hirai, Hirokazu</creatorcontrib><creatorcontrib>Shiraishi, Yoshitake</creatorcontrib><creatorcontrib>Ozaki, Noriyuki</creatorcontrib><creatorcontrib>Yamamoto, Yasuhiko</creatorcontrib><creatorcontrib>Okamoto, Hiroshi</creatorcontrib><creatorcontrib>Yokoyama, Shigeru</creatorcontrib><creatorcontrib>Higashida, Haruhiro</creatorcontrib><creatorcontrib>Kitao, Yasuko</creatorcontrib><creatorcontrib>Hori, Osamu</creatorcontrib><title>CD38 positively regulates postnatal development of astrocytes cell‐autonomously and oligodendrocytes non‐cell‐autonomously</title><title>Glia</title><addtitle>Glia</addtitle><description>Glial development is critical for the function of the central nervous system. CD38 is a multifunctional molecule with ADP‐ribosyl cyclase activity. While critical roles of CD38 in the adult brain such as oxytocin release and social behavior have been reported, those in the developing brain remain largely unknown. Here we demonstrate that deletion of Cd38 leads to impaired development of astrocytes and oligodendrocytes in mice. CD38 is highly expressed in the developing brains between postnatal day 14 (P14) and day 28 (P28). In situ hybridization and FACS analysis revealed that CD38 is expressed predominantly in astrocytes in these periods. Analyses of the cortex of Cd38 knockout (Cd38−/−) mice revealed delayed development of astrocytes and subsequently delayed differentiation of oligodendrocytes (OLs) at postnatal stages. In vitro experiments using primary OL cultures, mixed glial cultures, and astrocytic conditioned medium showed that astrocytic CD38 regulates the development of astrocytes in a cell‐autonomous manner and the differentiation of OLs in a non‐cell‐autonomous manner. Further experiments revealed that connexin43 (Cx43) in astrocytes plays a promotive role for CD38‐mediated OL differentiation. Finally, increased levels of NAD+, caused by CD38 deficiency, are likely to be responsible for the suppression of astrocytic Cx43 expression and OL differentiation. Our data indicate that CD38 is a positive regulator of astrocyte and OL development. Main Points CD38‐deficient mice exhibit impaired development of astrocytes and oligodendrocytes. CD38 increases astrocytic Cx43 expression by reducing NAD+ level. Cx43 promotes astrocytic maturation and OL differentiation.</description><subject>ADP-ribosyl Cyclase - genetics</subject><subject>ADP-ribosyl Cyclase - metabolism</subject><subject>ADP-ribosyl Cyclase 1 - genetics</subject><subject>ADP-ribosyl Cyclase 1 - metabolism</subject><subject>Animals</subject><subject>Astrocytes - cytology</subject><subject>Astrocytes - metabolism</subject><subject>autism</subject><subject>Brain - cytology</subject><subject>Brain - growth &amp; development</subject><subject>Brain - metabolism</subject><subject>Cell Differentiation - physiology</subject><subject>Cells, Cultured</subject><subject>Coculture Techniques</subject><subject>connexin 43</subject><subject>Connexin 43 - metabolism</subject><subject>cortex</subject><subject>Female</subject><subject>hemichannel</subject><subject>Male</subject><subject>Membrane Glycoproteins - genetics</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Mice, Inbred ICR</subject><subject>Mice, Knockout</subject><subject>myelin</subject><subject>NAD</subject><subject>NAD - metabolism</subject><subject>Oligodendroglia - cytology</subject><subject>Oligodendroglia - metabolism</subject><subject>Rats, Wistar</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqN0btOwzAUBmALgWi5LDwAisTCkuJjO449ogIFqRILzJGTOFUqxw5xAurWR-AZeRIcbgNiYPLlfDo6Rz9CJ4BngDG5WJlazQgFKnfQFLAUMQDlu2iKhWQxMAkTdOD9GmMIj3QfTYggMklSNkXb-RUVUet83dfP2myiTq8Go3rtx8_eql6ZqNSh5NpG2z5yVaR837liM5pCG_O2fVVD76xr3OBDB2XLyJl65Upty29onQ3uD36E9iplvD7-Og_R4831w_w2Xt4v7uaXy7gljMlYpBq4KkqgpahASs4YrzhUOCeaV3mOtWaM5DwVeUJpSYCINJeACSaM8qKgh-j8s2_buadB-z5raj_Oo6wOg2QgJAhBU0H_QdNUJAnlLNCzX3Tths6GRYISoaUUhAR1-qWGvNFl1nZ1o7pN9h1DAPAJXmqjNz91wNkYcDYGnH0EnC2Wd5cfN_oOO8edSg</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Hattori, Tsuyoshi</creator><creator>Kaji, Minoru</creator><creator>Ishii, Hiroshi</creator><creator>Jureepon, Roboon</creator><creator>Takarada‐Iemata, Mika</creator><creator>Minh Ta, Hieu</creator><creator>Manh Le, Thuong</creator><creator>Konno, Ayumu</creator><creator>Hirai, Hirokazu</creator><creator>Shiraishi, Yoshitake</creator><creator>Ozaki, Noriyuki</creator><creator>Yamamoto, Yasuhiko</creator><creator>Okamoto, Hiroshi</creator><creator>Yokoyama, Shigeru</creator><creator>Higashida, Haruhiro</creator><creator>Kitao, Yasuko</creator><creator>Hori, Osamu</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2210-0446</orcidid><orcidid>https://orcid.org/0000-0002-8168-8710</orcidid></search><sort><creationdate>201706</creationdate><title>CD38 positively regulates postnatal development of astrocytes cell‐autonomously and oligodendrocytes non‐cell‐autonomously</title><author>Hattori, Tsuyoshi ; Kaji, Minoru ; Ishii, Hiroshi ; Jureepon, Roboon ; Takarada‐Iemata, Mika ; Minh Ta, Hieu ; Manh Le, Thuong ; Konno, Ayumu ; Hirai, Hirokazu ; Shiraishi, Yoshitake ; Ozaki, Noriyuki ; Yamamoto, Yasuhiko ; Okamoto, Hiroshi ; Yokoyama, Shigeru ; Higashida, Haruhiro ; Kitao, Yasuko ; Hori, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2449-87e16acd13d8f1996446f61f0b2e6fbb0ee442b678b533d21287b910202436cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ADP-ribosyl Cyclase - genetics</topic><topic>ADP-ribosyl Cyclase - metabolism</topic><topic>ADP-ribosyl Cyclase 1 - genetics</topic><topic>ADP-ribosyl Cyclase 1 - metabolism</topic><topic>Animals</topic><topic>Astrocytes - cytology</topic><topic>Astrocytes - metabolism</topic><topic>autism</topic><topic>Brain - cytology</topic><topic>Brain - growth &amp; development</topic><topic>Brain - metabolism</topic><topic>Cell Differentiation - physiology</topic><topic>Cells, Cultured</topic><topic>Coculture Techniques</topic><topic>connexin 43</topic><topic>Connexin 43 - metabolism</topic><topic>cortex</topic><topic>Female</topic><topic>hemichannel</topic><topic>Male</topic><topic>Membrane Glycoproteins - genetics</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Mice, Inbred ICR</topic><topic>Mice, Knockout</topic><topic>myelin</topic><topic>NAD</topic><topic>NAD - metabolism</topic><topic>Oligodendroglia - cytology</topic><topic>Oligodendroglia - metabolism</topic><topic>Rats, Wistar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hattori, Tsuyoshi</creatorcontrib><creatorcontrib>Kaji, Minoru</creatorcontrib><creatorcontrib>Ishii, Hiroshi</creatorcontrib><creatorcontrib>Jureepon, Roboon</creatorcontrib><creatorcontrib>Takarada‐Iemata, Mika</creatorcontrib><creatorcontrib>Minh Ta, Hieu</creatorcontrib><creatorcontrib>Manh Le, Thuong</creatorcontrib><creatorcontrib>Konno, Ayumu</creatorcontrib><creatorcontrib>Hirai, Hirokazu</creatorcontrib><creatorcontrib>Shiraishi, Yoshitake</creatorcontrib><creatorcontrib>Ozaki, Noriyuki</creatorcontrib><creatorcontrib>Yamamoto, Yasuhiko</creatorcontrib><creatorcontrib>Okamoto, Hiroshi</creatorcontrib><creatorcontrib>Yokoyama, Shigeru</creatorcontrib><creatorcontrib>Higashida, Haruhiro</creatorcontrib><creatorcontrib>Kitao, Yasuko</creatorcontrib><creatorcontrib>Hori, Osamu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hattori, Tsuyoshi</au><au>Kaji, Minoru</au><au>Ishii, Hiroshi</au><au>Jureepon, Roboon</au><au>Takarada‐Iemata, Mika</au><au>Minh Ta, Hieu</au><au>Manh Le, Thuong</au><au>Konno, Ayumu</au><au>Hirai, Hirokazu</au><au>Shiraishi, Yoshitake</au><au>Ozaki, Noriyuki</au><au>Yamamoto, Yasuhiko</au><au>Okamoto, Hiroshi</au><au>Yokoyama, Shigeru</au><au>Higashida, Haruhiro</au><au>Kitao, Yasuko</au><au>Hori, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CD38 positively regulates postnatal development of astrocytes cell‐autonomously and oligodendrocytes non‐cell‐autonomously</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2017-06</date><risdate>2017</risdate><volume>65</volume><issue>6</issue><spage>974</spage><epage>989</epage><pages>974-989</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><coden>GLIAEJ</coden><abstract>Glial development is critical for the function of the central nervous system. CD38 is a multifunctional molecule with ADP‐ribosyl cyclase activity. While critical roles of CD38 in the adult brain such as oxytocin release and social behavior have been reported, those in the developing brain remain largely unknown. Here we demonstrate that deletion of Cd38 leads to impaired development of astrocytes and oligodendrocytes in mice. CD38 is highly expressed in the developing brains between postnatal day 14 (P14) and day 28 (P28). In situ hybridization and FACS analysis revealed that CD38 is expressed predominantly in astrocytes in these periods. Analyses of the cortex of Cd38 knockout (Cd38−/−) mice revealed delayed development of astrocytes and subsequently delayed differentiation of oligodendrocytes (OLs) at postnatal stages. In vitro experiments using primary OL cultures, mixed glial cultures, and astrocytic conditioned medium showed that astrocytic CD38 regulates the development of astrocytes in a cell‐autonomous manner and the differentiation of OLs in a non‐cell‐autonomous manner. Further experiments revealed that connexin43 (Cx43) in astrocytes plays a promotive role for CD38‐mediated OL differentiation. Finally, increased levels of NAD+, caused by CD38 deficiency, are likely to be responsible for the suppression of astrocytic Cx43 expression and OL differentiation. Our data indicate that CD38 is a positive regulator of astrocyte and OL development. Main Points CD38‐deficient mice exhibit impaired development of astrocytes and oligodendrocytes. CD38 increases astrocytic Cx43 expression by reducing NAD+ level. Cx43 promotes astrocytic maturation and OL differentiation.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28295574</pmid><doi>10.1002/glia.23139</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2210-0446</orcidid><orcidid>https://orcid.org/0000-0002-8168-8710</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0894-1491
ispartof Glia, 2017-06, Vol.65 (6), p.974-989
issn 0894-1491
1098-1136
language eng
recordid cdi_proquest_miscellaneous_1891883783
source Wiley-Blackwell Read & Publish Collection
subjects ADP-ribosyl Cyclase - genetics
ADP-ribosyl Cyclase - metabolism
ADP-ribosyl Cyclase 1 - genetics
ADP-ribosyl Cyclase 1 - metabolism
Animals
Astrocytes - cytology
Astrocytes - metabolism
autism
Brain - cytology
Brain - growth & development
Brain - metabolism
Cell Differentiation - physiology
Cells, Cultured
Coculture Techniques
connexin 43
Connexin 43 - metabolism
cortex
Female
hemichannel
Male
Membrane Glycoproteins - genetics
Membrane Glycoproteins - metabolism
Mice, Inbred ICR
Mice, Knockout
myelin
NAD
NAD - metabolism
Oligodendroglia - cytology
Oligodendroglia - metabolism
Rats, Wistar
title CD38 positively regulates postnatal development of astrocytes cell‐autonomously and oligodendrocytes non‐cell‐autonomously
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A15%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CD38%20positively%20regulates%20postnatal%20development%20of%20astrocytes%20cell%E2%80%90autonomously%20and%20oligodendrocytes%20non%E2%80%90cell%E2%80%90autonomously&rft.jtitle=Glia&rft.au=Hattori,%20Tsuyoshi&rft.date=2017-06&rft.volume=65&rft.issue=6&rft.spage=974&rft.epage=989&rft.pages=974-989&rft.issn=0894-1491&rft.eissn=1098-1136&rft.coden=GLIAEJ&rft_id=info:doi/10.1002/glia.23139&rft_dat=%3Cproquest_pubme%3E1891883783%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2449-87e16acd13d8f1996446f61f0b2e6fbb0ee442b678b533d21287b910202436cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1888919822&rft_id=info:pmid/28295574&rfr_iscdi=true