Loading…

Rainfall effects on inflow and infiltration in wastewater treatment systems in a coastal plain region

Aging wastewater collection and treatment systems have not received as much attention as other forms of infrastructure, even though they are vital to public health, economic growth, and environmental quality. Inflow and infiltration (I&I) are among potentially widespread problems facing central...

Full description

Saved in:
Bibliographic Details
Published in:Water science and technology 2017-04, Vol.75 (7-8), p.1909-1921
Main Authors: Cahoon, Lawrence B, Hanke, Marc H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aging wastewater collection and treatment systems have not received as much attention as other forms of infrastructure, even though they are vital to public health, economic growth, and environmental quality. Inflow and infiltration (I&I) are among potentially widespread problems facing central sewage collection and treatment systems, posing risks of sanitary system overflows (SSOs), system degradation, and water quality impairment, but remain poorly quantified. Whole-system analyses of I&I were conducted by regression analyses of system flow responses to rainfall and temperature for 93 wastewater treatment plants in 23 counties in eastern North Carolina, USA, a coastal plain region with high water tables and generally higher rainfalls than the continental interior. Statistically significant flow responses to rainfall were found in 92% of these systems, with 2-year average I&I values exceeding 10% of rainless system flow in over 40% of them. The effects of rainfall, which can be intense in this coastal region, have region-wide implications for sewer system performance and environmental management. The positive association between rainfall and excessive I&I parallels the effects of storm water runoff on water quality, in that excessive I&I can also drive SSOs, thus confounding water quality protection efforts.
ISSN:0273-1223
1996-9732
DOI:10.2166/wst.2017.072