Loading…
Electrochemical oxidation of quinoline aqueous solution on β-PbO2 anode and the evolution of phytotoxicity on duckweed
Electrochemical oxidation of quinoline on a β-PbO2 electrode modified with fluoride resin and the comprehensive toxicity of intermediates formed during oxidation on duckweed were investigated in detail. The results showed that quinoline was initially hydroxylated at the C-2 and C-8 positions by hydr...
Saved in:
Published in: | Water science and technology 2017-04, Vol.75 (8), p.1820-1829 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electrochemical oxidation of quinoline on a β-PbO2 electrode modified with fluoride resin and the comprehensive toxicity of intermediates formed during oxidation on duckweed were investigated in detail. The results showed that quinoline was initially hydroxylated at the C-2 and C-8 positions by hydroxyl radicals (·OH) electro-generated on a β-PbO2 anode, yielding 2(1H)-quinolinone and 8-hydroxyquinoline, then undergoing ring cleavage to form pyridine, nicotinic acid, pyridine-2-carboxaldehyde and acetophenone, which were ultimately converted to biodegradable organic acids. NO3− was the final form of quinoline-N. The growth of duckweed exposed to the oxidized quinoline solution was gradually inhibited with the decrease in pH and the formation of intermediates. However, the growth inhibition of duckweed could be eliminated beyond 120 min of oxidation, indicating the comprehensive toxicity of the quinoline solution reduced when the amount of quinoline removed was above 80%. Additionally, the adjustment of the pH to 7.5 and the addition of nutrients to the treated quinoline solution before culturing duckweed could obviously alleviate the inhibition on duckweed. Thus, partial electrochemical degradation of quinoline offers a cost-effective and clean alternative for pretreatment of wastewater containing nitrogen-heterocyclic compounds before biological treatment. The duckweed test presents a simple method for assessing the comprehensive toxicity of intermediates. |
---|---|
ISSN: | 0273-1223 1996-9732 |
DOI: | 10.2166/wst.2017.053 |