Loading…

Zonal processing of Hartmann or Shack-Hartmann patterns

Instead of measuring the wavefront deformations, Hartmann and Shack-Hartmann tests, we measure the wavefront slopes, which are equivalent to the ray transverse aberrations. Numerous different integration methods have been described in the literature to obtain the wavefront deformations from these me...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2017-03, Vol.56 (7), p.1898-1907
Main Authors: Gantes-Nuñez, Francisco Javier, Malacara-Hernández, Zacarías, Malacara-Doblado, Daniel, Malacara-Hernández, Daniel
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c324t-40e42c3d2c4270d2252a665662752a0e087e006b8443d11fcd7ae3fb4d84ac933
cites
container_end_page 1907
container_issue 7
container_start_page 1898
container_title Applied optics (2004)
container_volume 56
creator Gantes-Nuñez, Francisco Javier
Malacara-Hernández, Zacarías
Malacara-Doblado, Daniel
Malacara-Hernández, Daniel
description Instead of measuring the wavefront deformations, Hartmann and Shack-Hartmann tests, we measure the wavefront slopes, which are equivalent to the ray transverse aberrations. Numerous different integration methods have been described in the literature to obtain the wavefront deformations from these measurements. Basically, they can be classified in two different categories, i.e., modal and zonal. In this paper, we describe a proposed new zonal procedure. This method finds a different analytical expression for each square cell formed by four sampling points in the pupil of the system. In this manner, a full single analytical expression for the wavefront is not obtained. The advantage is that small localized errors that cannot be adjusted by a single polynomial function can be represented with this method. A second advantage is that the analytical function for each cell is obtained in an exact manner, without the errors in a trapezoidal integration.
doi_str_mv 10.1364/AO.56.001898
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893886785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893886785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-40e42c3d2c4270d2252a665662752a0e087e006b8443d11fcd7ae3fb4d84ac933</originalsourceid><addsrcrecordid>eNo9j01LxDAYhIMo7rp68yw9eklN3nz2uCzqCgt7UEG8lDRJtdqmNWkP_nsLrp5mGB6GGYQuKckpk_xmvc-FzAmhutBHaAlUCMyoFMdoOdsCU9AvC3SW0gchTPBCnaIFaOCaabVE6rUPps2G2FufUhPesr7OtiaOnQkh62P2-G7sJ_5PBjOOPoZ0jk5q0yZ_cdAVer67fdps8W5__7BZ77BlwEfMiedgmQPLQREHIMBIKaQENTviiVaeEFlpzpmjtLZOGc_qijvNjS0YW6Hr39554dfk01h2TbK-bU3w_ZTK-TXTWiotZvTqgE5V5105xKYz8bv8O8t-AHO4VDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1893886785</pqid></control><display><type>article</type><title>Zonal processing of Hartmann or Shack-Hartmann patterns</title><source>OSA_美国光学学会数据库1</source><creator>Gantes-Nuñez, Francisco Javier ; Malacara-Hernández, Zacarías ; Malacara-Doblado, Daniel ; Malacara-Hernández, Daniel</creator><creatorcontrib>Gantes-Nuñez, Francisco Javier ; Malacara-Hernández, Zacarías ; Malacara-Doblado, Daniel ; Malacara-Hernández, Daniel</creatorcontrib><description>Instead of measuring the wavefront deformations, Hartmann and Shack-Hartmann tests, we measure the wavefront slopes, which are equivalent to the ray transverse aberrations. Numerous different integration methods have been described in the literature to obtain the wavefront deformations from these measurements. Basically, they can be classified in two different categories, i.e., modal and zonal. In this paper, we describe a proposed new zonal procedure. This method finds a different analytical expression for each square cell formed by four sampling points in the pupil of the system. In this manner, a full single analytical expression for the wavefront is not obtained. The advantage is that small localized errors that cannot be adjusted by a single polynomial function can be represented with this method. A second advantage is that the analytical function for each cell is obtained in an exact manner, without the errors in a trapezoidal integration.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>DOI: 10.1364/AO.56.001898</identifier><identifier>PMID: 28248387</identifier><language>eng</language><publisher>United States</publisher><subject>Deformation ; Equivalence ; Exact solutions ; Functions (mathematics) ; Mathematical analysis ; Polynomials ; Sampling ; Wave fronts</subject><ispartof>Applied optics (2004), 2017-03, Vol.56 (7), p.1898-1907</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-40e42c3d2c4270d2252a665662752a0e087e006b8443d11fcd7ae3fb4d84ac933</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28248387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gantes-Nuñez, Francisco Javier</creatorcontrib><creatorcontrib>Malacara-Hernández, Zacarías</creatorcontrib><creatorcontrib>Malacara-Doblado, Daniel</creatorcontrib><creatorcontrib>Malacara-Hernández, Daniel</creatorcontrib><title>Zonal processing of Hartmann or Shack-Hartmann patterns</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>Instead of measuring the wavefront deformations, Hartmann and Shack-Hartmann tests, we measure the wavefront slopes, which are equivalent to the ray transverse aberrations. Numerous different integration methods have been described in the literature to obtain the wavefront deformations from these measurements. Basically, they can be classified in two different categories, i.e., modal and zonal. In this paper, we describe a proposed new zonal procedure. This method finds a different analytical expression for each square cell formed by four sampling points in the pupil of the system. In this manner, a full single analytical expression for the wavefront is not obtained. The advantage is that small localized errors that cannot be adjusted by a single polynomial function can be represented with this method. A second advantage is that the analytical function for each cell is obtained in an exact manner, without the errors in a trapezoidal integration.</description><subject>Deformation</subject><subject>Equivalence</subject><subject>Exact solutions</subject><subject>Functions (mathematics)</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Sampling</subject><subject>Wave fronts</subject><issn>1559-128X</issn><issn>2155-3165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9j01LxDAYhIMo7rp68yw9eklN3nz2uCzqCgt7UEG8lDRJtdqmNWkP_nsLrp5mGB6GGYQuKckpk_xmvc-FzAmhutBHaAlUCMyoFMdoOdsCU9AvC3SW0gchTPBCnaIFaOCaabVE6rUPps2G2FufUhPesr7OtiaOnQkh62P2-G7sJ_5PBjOOPoZ0jk5q0yZ_cdAVer67fdps8W5__7BZ77BlwEfMiedgmQPLQREHIMBIKaQENTviiVaeEFlpzpmjtLZOGc_qijvNjS0YW6Hr39554dfk01h2TbK-bU3w_ZTK-TXTWiotZvTqgE5V5105xKYz8bv8O8t-AHO4VDA</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Gantes-Nuñez, Francisco Javier</creator><creator>Malacara-Hernández, Zacarías</creator><creator>Malacara-Doblado, Daniel</creator><creator>Malacara-Hernández, Daniel</creator><scope>NPM</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170301</creationdate><title>Zonal processing of Hartmann or Shack-Hartmann patterns</title><author>Gantes-Nuñez, Francisco Javier ; Malacara-Hernández, Zacarías ; Malacara-Doblado, Daniel ; Malacara-Hernández, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-40e42c3d2c4270d2252a665662752a0e087e006b8443d11fcd7ae3fb4d84ac933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Deformation</topic><topic>Equivalence</topic><topic>Exact solutions</topic><topic>Functions (mathematics)</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Sampling</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gantes-Nuñez, Francisco Javier</creatorcontrib><creatorcontrib>Malacara-Hernández, Zacarías</creatorcontrib><creatorcontrib>Malacara-Doblado, Daniel</creatorcontrib><creatorcontrib>Malacara-Hernández, Daniel</creatorcontrib><collection>PubMed</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gantes-Nuñez, Francisco Javier</au><au>Malacara-Hernández, Zacarías</au><au>Malacara-Doblado, Daniel</au><au>Malacara-Hernández, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zonal processing of Hartmann or Shack-Hartmann patterns</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>56</volume><issue>7</issue><spage>1898</spage><epage>1907</epage><pages>1898-1907</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><abstract>Instead of measuring the wavefront deformations, Hartmann and Shack-Hartmann tests, we measure the wavefront slopes, which are equivalent to the ray transverse aberrations. Numerous different integration methods have been described in the literature to obtain the wavefront deformations from these measurements. Basically, they can be classified in two different categories, i.e., modal and zonal. In this paper, we describe a proposed new zonal procedure. This method finds a different analytical expression for each square cell formed by four sampling points in the pupil of the system. In this manner, a full single analytical expression for the wavefront is not obtained. The advantage is that small localized errors that cannot be adjusted by a single polynomial function can be represented with this method. A second advantage is that the analytical function for each cell is obtained in an exact manner, without the errors in a trapezoidal integration.</abstract><cop>United States</cop><pmid>28248387</pmid><doi>10.1364/AO.56.001898</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2017-03, Vol.56 (7), p.1898-1907
issn 1559-128X
2155-3165
language eng
recordid cdi_proquest_miscellaneous_1893886785
source OSA_美国光学学会数据库1
subjects Deformation
Equivalence
Exact solutions
Functions (mathematics)
Mathematical analysis
Polynomials
Sampling
Wave fronts
title Zonal processing of Hartmann or Shack-Hartmann patterns
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zonal%20processing%20of%20Hartmann%20or%20Shack-Hartmann%20patterns&rft.jtitle=Applied%20optics%20(2004)&rft.au=Gantes-Nu%C3%B1ez,%20Francisco%20Javier&rft.date=2017-03-01&rft.volume=56&rft.issue=7&rft.spage=1898&rft.epage=1907&rft.pages=1898-1907&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.56.001898&rft_dat=%3Cproquest_pubme%3E1893886785%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-40e42c3d2c4270d2252a665662752a0e087e006b8443d11fcd7ae3fb4d84ac933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1893886785&rft_id=info:pmid/28248387&rfr_iscdi=true