Loading…
Zonal processing of Hartmann or Shack-Hartmann patterns
Instead of measuring the wavefront deformations, Hartmann and Shack-Hartmann tests, we measure the wavefront slopes, which are equivalent to the ray transverse aberrations. Numerous different integration methods have been described in the literature to obtain the wavefront deformations from these me...
Saved in:
Published in: | Applied optics (2004) 2017-03, Vol.56 (7), p.1898-1907 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c324t-40e42c3d2c4270d2252a665662752a0e087e006b8443d11fcd7ae3fb4d84ac933 |
---|---|
cites | |
container_end_page | 1907 |
container_issue | 7 |
container_start_page | 1898 |
container_title | Applied optics (2004) |
container_volume | 56 |
creator | Gantes-Nuñez, Francisco Javier Malacara-Hernández, Zacarías Malacara-Doblado, Daniel Malacara-Hernández, Daniel |
description | Instead of measuring the wavefront deformations, Hartmann and Shack-Hartmann tests, we measure the wavefront slopes, which are equivalent to the ray transverse aberrations. Numerous different integration methods have been described in the literature to obtain the wavefront deformations from these measurements. Basically, they can be classified in two different categories, i.e., modal and zonal. In this paper, we describe a proposed new zonal procedure. This method finds a different analytical expression for each square cell formed by four sampling points in the pupil of the system. In this manner, a full single analytical expression for the wavefront is not obtained. The advantage is that small localized errors that cannot be adjusted by a single polynomial function can be represented with this method. A second advantage is that the analytical function for each cell is obtained in an exact manner, without the errors in a trapezoidal integration. |
doi_str_mv | 10.1364/AO.56.001898 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893886785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893886785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-40e42c3d2c4270d2252a665662752a0e087e006b8443d11fcd7ae3fb4d84ac933</originalsourceid><addsrcrecordid>eNo9j01LxDAYhIMo7rp68yw9eklN3nz2uCzqCgt7UEG8lDRJtdqmNWkP_nsLrp5mGB6GGYQuKckpk_xmvc-FzAmhutBHaAlUCMyoFMdoOdsCU9AvC3SW0gchTPBCnaIFaOCaabVE6rUPps2G2FufUhPesr7OtiaOnQkh62P2-G7sJ_5PBjOOPoZ0jk5q0yZ_cdAVer67fdps8W5__7BZ77BlwEfMiedgmQPLQREHIMBIKaQENTviiVaeEFlpzpmjtLZOGc_qijvNjS0YW6Hr39554dfk01h2TbK-bU3w_ZTK-TXTWiotZvTqgE5V5105xKYz8bv8O8t-AHO4VDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1893886785</pqid></control><display><type>article</type><title>Zonal processing of Hartmann or Shack-Hartmann patterns</title><source>OSA_美国光学学会数据库1</source><creator>Gantes-Nuñez, Francisco Javier ; Malacara-Hernández, Zacarías ; Malacara-Doblado, Daniel ; Malacara-Hernández, Daniel</creator><creatorcontrib>Gantes-Nuñez, Francisco Javier ; Malacara-Hernández, Zacarías ; Malacara-Doblado, Daniel ; Malacara-Hernández, Daniel</creatorcontrib><description>Instead of measuring the wavefront deformations, Hartmann and Shack-Hartmann tests, we measure the wavefront slopes, which are equivalent to the ray transverse aberrations. Numerous different integration methods have been described in the literature to obtain the wavefront deformations from these measurements. Basically, they can be classified in two different categories, i.e., modal and zonal. In this paper, we describe a proposed new zonal procedure. This method finds a different analytical expression for each square cell formed by four sampling points in the pupil of the system. In this manner, a full single analytical expression for the wavefront is not obtained. The advantage is that small localized errors that cannot be adjusted by a single polynomial function can be represented with this method. A second advantage is that the analytical function for each cell is obtained in an exact manner, without the errors in a trapezoidal integration.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>DOI: 10.1364/AO.56.001898</identifier><identifier>PMID: 28248387</identifier><language>eng</language><publisher>United States</publisher><subject>Deformation ; Equivalence ; Exact solutions ; Functions (mathematics) ; Mathematical analysis ; Polynomials ; Sampling ; Wave fronts</subject><ispartof>Applied optics (2004), 2017-03, Vol.56 (7), p.1898-1907</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-40e42c3d2c4270d2252a665662752a0e087e006b8443d11fcd7ae3fb4d84ac933</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28248387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gantes-Nuñez, Francisco Javier</creatorcontrib><creatorcontrib>Malacara-Hernández, Zacarías</creatorcontrib><creatorcontrib>Malacara-Doblado, Daniel</creatorcontrib><creatorcontrib>Malacara-Hernández, Daniel</creatorcontrib><title>Zonal processing of Hartmann or Shack-Hartmann patterns</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>Instead of measuring the wavefront deformations, Hartmann and Shack-Hartmann tests, we measure the wavefront slopes, which are equivalent to the ray transverse aberrations. Numerous different integration methods have been described in the literature to obtain the wavefront deformations from these measurements. Basically, they can be classified in two different categories, i.e., modal and zonal. In this paper, we describe a proposed new zonal procedure. This method finds a different analytical expression for each square cell formed by four sampling points in the pupil of the system. In this manner, a full single analytical expression for the wavefront is not obtained. The advantage is that small localized errors that cannot be adjusted by a single polynomial function can be represented with this method. A second advantage is that the analytical function for each cell is obtained in an exact manner, without the errors in a trapezoidal integration.</description><subject>Deformation</subject><subject>Equivalence</subject><subject>Exact solutions</subject><subject>Functions (mathematics)</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Sampling</subject><subject>Wave fronts</subject><issn>1559-128X</issn><issn>2155-3165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9j01LxDAYhIMo7rp68yw9eklN3nz2uCzqCgt7UEG8lDRJtdqmNWkP_nsLrp5mGB6GGYQuKckpk_xmvc-FzAmhutBHaAlUCMyoFMdoOdsCU9AvC3SW0gchTPBCnaIFaOCaabVE6rUPps2G2FufUhPesr7OtiaOnQkh62P2-G7sJ_5PBjOOPoZ0jk5q0yZ_cdAVer67fdps8W5__7BZ77BlwEfMiedgmQPLQREHIMBIKaQENTviiVaeEFlpzpmjtLZOGc_qijvNjS0YW6Hr39554dfk01h2TbK-bU3w_ZTK-TXTWiotZvTqgE5V5105xKYz8bv8O8t-AHO4VDA</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Gantes-Nuñez, Francisco Javier</creator><creator>Malacara-Hernández, Zacarías</creator><creator>Malacara-Doblado, Daniel</creator><creator>Malacara-Hernández, Daniel</creator><scope>NPM</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170301</creationdate><title>Zonal processing of Hartmann or Shack-Hartmann patterns</title><author>Gantes-Nuñez, Francisco Javier ; Malacara-Hernández, Zacarías ; Malacara-Doblado, Daniel ; Malacara-Hernández, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-40e42c3d2c4270d2252a665662752a0e087e006b8443d11fcd7ae3fb4d84ac933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Deformation</topic><topic>Equivalence</topic><topic>Exact solutions</topic><topic>Functions (mathematics)</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Sampling</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gantes-Nuñez, Francisco Javier</creatorcontrib><creatorcontrib>Malacara-Hernández, Zacarías</creatorcontrib><creatorcontrib>Malacara-Doblado, Daniel</creatorcontrib><creatorcontrib>Malacara-Hernández, Daniel</creatorcontrib><collection>PubMed</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gantes-Nuñez, Francisco Javier</au><au>Malacara-Hernández, Zacarías</au><au>Malacara-Doblado, Daniel</au><au>Malacara-Hernández, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zonal processing of Hartmann or Shack-Hartmann patterns</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>56</volume><issue>7</issue><spage>1898</spage><epage>1907</epage><pages>1898-1907</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><abstract>Instead of measuring the wavefront deformations, Hartmann and Shack-Hartmann tests, we measure the wavefront slopes, which are equivalent to the ray transverse aberrations. Numerous different integration methods have been described in the literature to obtain the wavefront deformations from these measurements. Basically, they can be classified in two different categories, i.e., modal and zonal. In this paper, we describe a proposed new zonal procedure. This method finds a different analytical expression for each square cell formed by four sampling points in the pupil of the system. In this manner, a full single analytical expression for the wavefront is not obtained. The advantage is that small localized errors that cannot be adjusted by a single polynomial function can be represented with this method. A second advantage is that the analytical function for each cell is obtained in an exact manner, without the errors in a trapezoidal integration.</abstract><cop>United States</cop><pmid>28248387</pmid><doi>10.1364/AO.56.001898</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied optics (2004), 2017-03, Vol.56 (7), p.1898-1907 |
issn | 1559-128X 2155-3165 |
language | eng |
recordid | cdi_proquest_miscellaneous_1893886785 |
source | OSA_美国光学学会数据库1 |
subjects | Deformation Equivalence Exact solutions Functions (mathematics) Mathematical analysis Polynomials Sampling Wave fronts |
title | Zonal processing of Hartmann or Shack-Hartmann patterns |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zonal%20processing%20of%20Hartmann%20or%20Shack-Hartmann%20patterns&rft.jtitle=Applied%20optics%20(2004)&rft.au=Gantes-Nu%C3%B1ez,%20Francisco%20Javier&rft.date=2017-03-01&rft.volume=56&rft.issue=7&rft.spage=1898&rft.epage=1907&rft.pages=1898-1907&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.56.001898&rft_dat=%3Cproquest_pubme%3E1893886785%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-40e42c3d2c4270d2252a665662752a0e087e006b8443d11fcd7ae3fb4d84ac933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1893886785&rft_id=info:pmid/28248387&rfr_iscdi=true |