Loading…
Solid‐phase extraction based on a molecularly imprinted polymer nanoshell at the surface of silica nanospheres for the specific enrichment and identification of alkaloids from Crinum asiaticum L. var. sinicum
A molecularly imprinted nanoshell on the surface of silica nanospheres was prepared for specific enrichment and identification of alkaloids from Crinum asiaticum L. var. sinicum. The nanoshell was synthesized by surface polymerization using lycorine as the template, acrylamide as the functional mono...
Saved in:
Published in: | Journal of separation science 2017-03, Vol.40 (5), p.1150-1157 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A molecularly imprinted nanoshell on the surface of silica nanospheres was prepared for specific enrichment and identification of alkaloids from Crinum asiaticum L. var. sinicum. The nanoshell was synthesized by surface polymerization using lycorine as the template, acrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross‐linker, 2′,2‐azobisisobutyronitrile as the initiator and acetonitrile as the pore‐forming agent. The core–shell nanospheres were characterized by transmission electron microscopy and infrared spectroscopy, and the results show that the nanoshell layer was homogeneously attached to the surface of vinyl‐modified SiO2 nanospheres. The adsorption capacity of the nanospheres was estimated by binding equilibrium and adsorption kinetics experiments. The maximum adsorption amount of lycorine on the nanospheres was 6.68 μmol/g and the imprinting factor was nearly 2.5, indicating a good imprinting effect. The nanospheres were successfully applied in solid‐phase extraction for lycorine from Crinum asaticum L. var. sinicum and detection of target molecule in rat metabolites. The average recoveries of lycorine in Crinum asaticum L. var. sinicum extraction and rat metabolites were 93.5 ± 0.6% (n = 3) and 91.6 ± 1.9% (n = 3), respectively. This work provides a simple approach for the fabrication of a molecularly imprinted nanoshell at the surface of silica nanospheres‐based solid‐phase extraction for drug analysis. |
---|---|
ISSN: | 1615-9306 1615-9314 |
DOI: | 10.1002/jssc.201601116 |