Loading…
Whispering gallery mode single nanoparticle detection and sizing: the validity of the dipole approximation
Interactions between whispering gallery modes (WGMs) and small nanoparticles are commonly modeled by treating the particle as a point dipole scatterer. This approach is assumed to be accurate as long as the nanoparticle radius, a, is small compared to the WGM wavelength λ. In this Letter, however, w...
Saved in:
Published in: | Optics letters 2017-03, Vol.42 (5), p.963-966 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Interactions between whispering gallery modes (WGMs) and small nanoparticles are commonly modeled by treating the particle as a point dipole scatterer. This approach is assumed to be accurate as long as the nanoparticle radius, a, is small compared to the WGM wavelength λ. In this Letter, however, we show that the large field gradients associated with the evanescent decay of a WGM causes the dipole theory to significantly underestimate the interaction strength and, hence, the induced WGM resonance shift, even for particles as small as a∼λ/10. To mitigate this issue, we employ a renormalized Born approximation to more accurately determine nanoparticle-induced resonance shifts and, hence, enable improved particle sizing. The domain of validity of this approximation is investigated, and supporting experimental results are presented. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.42.000963 |