Loading…
Open waveguides in a thin Dirichlet lattice: II. localized waves and radiation conditions
Wave processes localized near an angular open waveguide obtained by thickening two perpendicular semi-infinite rows of ligaments in a thin square lattice of quantum waveguides (Dirichlet problem for the Helmholtz equation) are investigated. Waves of two types are discovered: the first are observed n...
Saved in:
Published in: | Computational mathematics and mathematical physics 2017-02, Vol.57 (2), p.236-252 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-44fb8631199c931a99b7fa3c5610c6bfd7aaf2485887c1e98ee64a7fac3e303f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-44fb8631199c931a99b7fa3c5610c6bfd7aaf2485887c1e98ee64a7fac3e303f3 |
container_end_page | 252 |
container_issue | 2 |
container_start_page | 236 |
container_title | Computational mathematics and mathematical physics |
container_volume | 57 |
creator | Nazarov, S. A. |
description | Wave processes localized near an angular open waveguide obtained by thickening two perpendicular semi-infinite rows of ligaments in a thin square lattice of quantum waveguides (Dirichlet problem for the Helmholtz equation) are investigated. Waves of two types are discovered: the first are observed near the lattice nodes and almost do not affect the ligaments, while the second, on the contrary, excite oscillations in the ligaments, whereas the nodes stay relatively at rest. Asymptotic representations of the wave fields are derived, and radiation conditions are imposed on the basis of the Umov–Mandelstam energy principle. |
doi_str_mv | 10.1134/S0965542517020129 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893901665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4319892871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-44fb8631199c931a99b7fa3c5610c6bfd7aaf2485887c1e98ee64a7fac3e303f3</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqXwAdgssbCk2HHs2Gyo_KtUqQMwMEWuc2ldpU6xExB8ehzCgEBMd9L7vae7h9ApJRNKWXbxQJTgPEs5zUlKaKr20IhyzhMhRLqPRr2c9PohOgphQwgVSrIRel7swOE3_QqrzpYQsHVY43Ydx7X11qxraHGt29YauMSz2QTXjdG1_YDyyxWwdiX2urS6tY3DpnGl7bdwjA4qXQc4-Z5j9HR78zi9T-aLu9n0ap4Ylqk2ybJqKQWjVCmjGNVKLfNKM8MFJUYsqzLXukozyaXMDQUlAUSmI2IYMMIqNkbnQ-7ONy8dhLbY2mCgrrWDpgsFlYqp-K7gET37hW6azrt4XaRyLqSUKYkUHSjjmxA8VMXO26327wUlRV928afs6EkHT4isW4H_kfyv6RMG-3_0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875688820</pqid></control><display><type>article</type><title>Open waveguides in a thin Dirichlet lattice: II. localized waves and radiation conditions</title><source>ABI/INFORM global</source><source>Springer Link</source><creator>Nazarov, S. A.</creator><creatorcontrib>Nazarov, S. A.</creatorcontrib><description>Wave processes localized near an angular open waveguide obtained by thickening two perpendicular semi-infinite rows of ligaments in a thin square lattice of quantum waveguides (Dirichlet problem for the Helmholtz equation) are investigated. Waves of two types are discovered: the first are observed near the lattice nodes and almost do not affect the ligaments, while the second, on the contrary, excite oscillations in the ligaments, whereas the nodes stay relatively at rest. Asymptotic representations of the wave fields are derived, and radiation conditions are imposed on the basis of the Umov–Mandelstam energy principle.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542517020129</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebraic group theory ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Dirichlet problem ; Eigenvalues ; Helmholtz equations ; Lattice theory ; Lattices (mathematics) ; Ligaments ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Oscillations ; Physics ; Radiation ; Representations ; Rest ; Studies ; Theorems ; Waveguides</subject><ispartof>Computational mathematics and mathematical physics, 2017-02, Vol.57 (2), p.236-252</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Computational Mathematics and Mathematical Physics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-44fb8631199c931a99b7fa3c5610c6bfd7aaf2485887c1e98ee64a7fac3e303f3</citedby><cites>FETCH-LOGICAL-c349t-44fb8631199c931a99b7fa3c5610c6bfd7aaf2485887c1e98ee64a7fac3e303f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1875688820?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,11669,27905,27906,36041,36042,44344</link.rule.ids></links><search><creatorcontrib>Nazarov, S. A.</creatorcontrib><title>Open waveguides in a thin Dirichlet lattice: II. localized waves and radiation conditions</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>Wave processes localized near an angular open waveguide obtained by thickening two perpendicular semi-infinite rows of ligaments in a thin square lattice of quantum waveguides (Dirichlet problem for the Helmholtz equation) are investigated. Waves of two types are discovered: the first are observed near the lattice nodes and almost do not affect the ligaments, while the second, on the contrary, excite oscillations in the ligaments, whereas the nodes stay relatively at rest. Asymptotic representations of the wave fields are derived, and radiation conditions are imposed on the basis of the Umov–Mandelstam energy principle.</description><subject>Algebraic group theory</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Dirichlet problem</subject><subject>Eigenvalues</subject><subject>Helmholtz equations</subject><subject>Lattice theory</subject><subject>Lattices (mathematics)</subject><subject>Ligaments</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Oscillations</subject><subject>Physics</subject><subject>Radiation</subject><subject>Representations</subject><subject>Rest</subject><subject>Studies</subject><subject>Theorems</subject><subject>Waveguides</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kD9PwzAQxS0EEqXwAdgssbCk2HHs2Gyo_KtUqQMwMEWuc2ldpU6xExB8ehzCgEBMd9L7vae7h9ApJRNKWXbxQJTgPEs5zUlKaKr20IhyzhMhRLqPRr2c9PohOgphQwgVSrIRel7swOE3_QqrzpYQsHVY43Ydx7X11qxraHGt29YauMSz2QTXjdG1_YDyyxWwdiX2urS6tY3DpnGl7bdwjA4qXQc4-Z5j9HR78zi9T-aLu9n0ap4Ylqk2ybJqKQWjVCmjGNVKLfNKM8MFJUYsqzLXukozyaXMDQUlAUSmI2IYMMIqNkbnQ-7ONy8dhLbY2mCgrrWDpgsFlYqp-K7gET37hW6azrt4XaRyLqSUKYkUHSjjmxA8VMXO26327wUlRV928afs6EkHT4isW4H_kfyv6RMG-3_0</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Nazarov, S. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20170201</creationdate><title>Open waveguides in a thin Dirichlet lattice: II. localized waves and radiation conditions</title><author>Nazarov, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-44fb8631199c931a99b7fa3c5610c6bfd7aaf2485887c1e98ee64a7fac3e303f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebraic group theory</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Dirichlet problem</topic><topic>Eigenvalues</topic><topic>Helmholtz equations</topic><topic>Lattice theory</topic><topic>Lattices (mathematics)</topic><topic>Ligaments</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Oscillations</topic><topic>Physics</topic><topic>Radiation</topic><topic>Representations</topic><topic>Rest</topic><topic>Studies</topic><topic>Theorems</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nazarov, S. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nazarov, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open waveguides in a thin Dirichlet lattice: II. localized waves and radiation conditions</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>57</volume><issue>2</issue><spage>236</spage><epage>252</epage><pages>236-252</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>Wave processes localized near an angular open waveguide obtained by thickening two perpendicular semi-infinite rows of ligaments in a thin square lattice of quantum waveguides (Dirichlet problem for the Helmholtz equation) are investigated. Waves of two types are discovered: the first are observed near the lattice nodes and almost do not affect the ligaments, while the second, on the contrary, excite oscillations in the ligaments, whereas the nodes stay relatively at rest. Asymptotic representations of the wave fields are derived, and radiation conditions are imposed on the basis of the Umov–Mandelstam energy principle.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542517020129</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5425 |
ispartof | Computational mathematics and mathematical physics, 2017-02, Vol.57 (2), p.236-252 |
issn | 0965-5425 1555-6662 |
language | eng |
recordid | cdi_proquest_miscellaneous_1893901665 |
source | ABI/INFORM global; Springer Link |
subjects | Algebraic group theory Computational mathematics Computational Mathematics and Numerical Analysis Dirichlet problem Eigenvalues Helmholtz equations Lattice theory Lattices (mathematics) Ligaments Mathematical models Mathematics Mathematics and Statistics Oscillations Physics Radiation Representations Rest Studies Theorems Waveguides |
title | Open waveguides in a thin Dirichlet lattice: II. localized waves and radiation conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open%20waveguides%20in%20a%20thin%20Dirichlet%20lattice:%20II.%20localized%20waves%20and%20radiation%20conditions&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Nazarov,%20S.%20A.&rft.date=2017-02-01&rft.volume=57&rft.issue=2&rft.spage=236&rft.epage=252&rft.pages=236-252&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542517020129&rft_dat=%3Cproquest_cross%3E4319892871%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-44fb8631199c931a99b7fa3c5610c6bfd7aaf2485887c1e98ee64a7fac3e303f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1875688820&rft_id=info:pmid/&rfr_iscdi=true |