Loading…
Approach for power scaling solid-state lasers with intracavity motion
Solid-state lasers are typically limited by adverse thermal effects within the gain medium. In this Letter we describe a new method for dramatically reducing thermal effects in an end-pumped solid-state laser by incorporating a rotating intracavity periscope in the resonator to spatially separate th...
Saved in:
Published in: | Optics letters 2017-02, Vol.42 (4), p.775-778 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Solid-state lasers are typically limited by adverse thermal effects within the gain medium. In this Letter we describe a new method for dramatically reducing thermal effects in an end-pumped solid-state laser by incorporating a rotating intracavity periscope in the resonator to spatially separate the lasing and thermal processes. In contrast with previous examples of moving solid-state lasers, our approach keeps the gain medium stationary, simplifying the heat removal arrangement. This scheme has been applied to an Nd:YAG laser, yielding an output power of 120 W at 1.064 μm, limited by available pump power. Analysis suggests that scaling to much higher power is feasible with the appropriate laser design. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.42.000775 |