Loading…

Change in the activity character of the coronae of low-mass stars of various spectral types

We study the dependence of the coronal activity index on the stellar rotation velocity. This question has been considered previously for 824 late-type stars on the basis of a consolidated catalogue of soft X-ray fluxes. We carry out a more refined analysis separately for G, K, and M dwarfs. Two mode...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy letters 2017-03, Vol.43 (3), p.202-209
Main Authors: Nizamov, B. A., Katsova, M. M., Livshits, M. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the dependence of the coronal activity index on the stellar rotation velocity. This question has been considered previously for 824 late-type stars on the basis of a consolidated catalogue of soft X-ray fluxes. We carry out a more refined analysis separately for G, K, and M dwarfs. Two modes of activity are clearly identified in them. The first is the saturation mode, is characteristic of young stars, and is virtually independent of their rotation. The second refers to the solar-type activity whose level strongly depends on the rotation period. We show that the transition from one mode to the other occurs at rotation periods of 1.1, 3.3, and 7.2 days for stars of spectral types G2, K4, and M3, respectively. In light of the discovery of superflares on G and K stars from the Kepler spacecraft, the question arises as to what distinguishes these objects from the remaining active late-type stars. We analyze the positions of superflare stars relative to the remaining stars observed by Kepler on the “amplitude of rotational brightness modulation (ARM)—rotation period” diagram. The ARM reflects the relative spots area on a star and characterizes the activity level in the entire atmosphere. G and K superflare stars are shown to be basically rapidly rotating young objects, but some of them belong to the stars with the solar type of activity.
ISSN:1063-7737
1562-6873
DOI:10.1134/S1063773717020049