Loading…
Two New Convolutions for the Fractional Fourier Transform
In this paper we introduce two novel convolutions for the fractional Fourier transforms, and prove natural algebraic properties of the corresponding multiplications such as commutativity, associativity and distributivity, which may be useful in signal processing and other types of applications. We a...
Saved in:
Published in: | Wireless personal communications 2017-01, Vol.92 (2), p.623-637 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-84a66313ba274799acafab99a208f0df59119cfd166ed591ea422299627cce613 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-84a66313ba274799acafab99a208f0df59119cfd166ed591ea422299627cce613 |
container_end_page | 637 |
container_issue | 2 |
container_start_page | 623 |
container_title | Wireless personal communications |
container_volume | 92 |
creator | Anh, P. K. Castro, L. P. Thao, P. T. Tuan, N. M. |
description | In this paper we introduce two novel convolutions for the fractional Fourier transforms, and prove natural algebraic properties of the corresponding multiplications such as commutativity, associativity and distributivity, which may be useful in signal processing and other types of applications. We analyze a consequent comparison with other known convolutions, and establish necessary and sufficient conditions for the solvability of associated convolution equations of both the first and second kind in
L
1
(
R
)
and
L
2
(
R
)
spaces. An example satisfying the sufficient and necessary condition for the solvability of the equations is given at the end of the paper . |
doi_str_mv | 10.1007/s11277-016-3567-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893905262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893905262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-84a66313ba274799acafab99a208f0df59119cfd166ed591ea422299627cce613</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNuCFy_RzGQ32Ryl2CoUvVTwFtI0q1u2m5rsWvz3ZlkPIngaZuZ7j8cj5BLYDTAmbyMASkkZCMoLISk_IhMoJNKS56_HZMIUKioQ8JScxbhlLKkUTohaHXz25A7ZzLefvum72rcxq3zIuneXzYOxw8U02dz3oXYhWwXTxvTfnZOTyjTRXfzMKXmZ369mD3T5vHic3S2pzaHsaJkbITjwtUGZS6WMNZVZp4msrNimKhSAstUGhHCbtDiTI6JSAqW1TgCfkuvRdx_8R-9ip3d1tK5pTOt8HzWUiitWoMCEXv1Btyl1Sj9QJSsZ5qpIFIyUDT7G4Cq9D_XOhC8NTA9l6rFMncrUQ5maJw2OmpjY9s2FX87_ir4BZsV1iQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880802495</pqid></control><display><type>article</type><title>Two New Convolutions for the Fractional Fourier Transform</title><source>Springer Nature</source><creator>Anh, P. K. ; Castro, L. P. ; Thao, P. T. ; Tuan, N. M.</creator><creatorcontrib>Anh, P. K. ; Castro, L. P. ; Thao, P. T. ; Tuan, N. M.</creatorcontrib><description>In this paper we introduce two novel convolutions for the fractional Fourier transforms, and prove natural algebraic properties of the corresponding multiplications such as commutativity, associativity and distributivity, which may be useful in signal processing and other types of applications. We analyze a consequent comparison with other known convolutions, and establish necessary and sufficient conditions for the solvability of associated convolution equations of both the first and second kind in
L
1
(
R
)
and
L
2
(
R
)
spaces. An example satisfying the sufficient and necessary condition for the solvability of the equations is given at the end of the paper .</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-016-3567-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Associativity ; Communications Engineering ; Commutativity ; Computer Communication Networks ; Convolution ; Engineering ; Fourier transforms ; Mathematical analysis ; Multiplication ; Networks ; Personal communication ; Signal processing ; Signal,Image and Speech Processing ; Wireless communication</subject><ispartof>Wireless personal communications, 2017-01, Vol.92 (2), p.623-637</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-84a66313ba274799acafab99a208f0df59119cfd166ed591ea422299627cce613</citedby><cites>FETCH-LOGICAL-c418t-84a66313ba274799acafab99a208f0df59119cfd166ed591ea422299627cce613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Anh, P. K.</creatorcontrib><creatorcontrib>Castro, L. P.</creatorcontrib><creatorcontrib>Thao, P. T.</creatorcontrib><creatorcontrib>Tuan, N. M.</creatorcontrib><title>Two New Convolutions for the Fractional Fourier Transform</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>In this paper we introduce two novel convolutions for the fractional Fourier transforms, and prove natural algebraic properties of the corresponding multiplications such as commutativity, associativity and distributivity, which may be useful in signal processing and other types of applications. We analyze a consequent comparison with other known convolutions, and establish necessary and sufficient conditions for the solvability of associated convolution equations of both the first and second kind in
L
1
(
R
)
and
L
2
(
R
)
spaces. An example satisfying the sufficient and necessary condition for the solvability of the equations is given at the end of the paper .</description><subject>Algebra</subject><subject>Associativity</subject><subject>Communications Engineering</subject><subject>Commutativity</subject><subject>Computer Communication Networks</subject><subject>Convolution</subject><subject>Engineering</subject><subject>Fourier transforms</subject><subject>Mathematical analysis</subject><subject>Multiplication</subject><subject>Networks</subject><subject>Personal communication</subject><subject>Signal processing</subject><subject>Signal,Image and Speech Processing</subject><subject>Wireless communication</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wNuCFy_RzGQ32Ryl2CoUvVTwFtI0q1u2m5rsWvz3ZlkPIngaZuZ7j8cj5BLYDTAmbyMASkkZCMoLISk_IhMoJNKS56_HZMIUKioQ8JScxbhlLKkUTohaHXz25A7ZzLefvum72rcxq3zIuneXzYOxw8U02dz3oXYhWwXTxvTfnZOTyjTRXfzMKXmZ369mD3T5vHic3S2pzaHsaJkbITjwtUGZS6WMNZVZp4msrNimKhSAstUGhHCbtDiTI6JSAqW1TgCfkuvRdx_8R-9ip3d1tK5pTOt8HzWUiitWoMCEXv1Btyl1Sj9QJSsZ5qpIFIyUDT7G4Cq9D_XOhC8NTA9l6rFMncrUQ5maJw2OmpjY9s2FX87_ir4BZsV1iQ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Anh, P. K.</creator><creator>Castro, L. P.</creator><creator>Thao, P. T.</creator><creator>Tuan, N. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170101</creationdate><title>Two New Convolutions for the Fractional Fourier Transform</title><author>Anh, P. K. ; Castro, L. P. ; Thao, P. T. ; Tuan, N. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-84a66313ba274799acafab99a208f0df59119cfd166ed591ea422299627cce613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Associativity</topic><topic>Communications Engineering</topic><topic>Commutativity</topic><topic>Computer Communication Networks</topic><topic>Convolution</topic><topic>Engineering</topic><topic>Fourier transforms</topic><topic>Mathematical analysis</topic><topic>Multiplication</topic><topic>Networks</topic><topic>Personal communication</topic><topic>Signal processing</topic><topic>Signal,Image and Speech Processing</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anh, P. K.</creatorcontrib><creatorcontrib>Castro, L. P.</creatorcontrib><creatorcontrib>Thao, P. T.</creatorcontrib><creatorcontrib>Tuan, N. M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anh, P. K.</au><au>Castro, L. P.</au><au>Thao, P. T.</au><au>Tuan, N. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two New Convolutions for the Fractional Fourier Transform</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>92</volume><issue>2</issue><spage>623</spage><epage>637</epage><pages>623-637</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>In this paper we introduce two novel convolutions for the fractional Fourier transforms, and prove natural algebraic properties of the corresponding multiplications such as commutativity, associativity and distributivity, which may be useful in signal processing and other types of applications. We analyze a consequent comparison with other known convolutions, and establish necessary and sufficient conditions for the solvability of associated convolution equations of both the first and second kind in
L
1
(
R
)
and
L
2
(
R
)
spaces. An example satisfying the sufficient and necessary condition for the solvability of the equations is given at the end of the paper .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11277-016-3567-3</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-6212 |
ispartof | Wireless personal communications, 2017-01, Vol.92 (2), p.623-637 |
issn | 0929-6212 1572-834X |
language | eng |
recordid | cdi_proquest_miscellaneous_1893905262 |
source | Springer Nature |
subjects | Algebra Associativity Communications Engineering Commutativity Computer Communication Networks Convolution Engineering Fourier transforms Mathematical analysis Multiplication Networks Personal communication Signal processing Signal,Image and Speech Processing Wireless communication |
title | Two New Convolutions for the Fractional Fourier Transform |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20New%20Convolutions%20for%20the%20Fractional%20Fourier%20Transform&rft.jtitle=Wireless%20personal%20communications&rft.au=Anh,%20P.%20K.&rft.date=2017-01-01&rft.volume=92&rft.issue=2&rft.spage=623&rft.epage=637&rft.pages=623-637&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-016-3567-3&rft_dat=%3Cproquest_cross%3E1893905262%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-84a66313ba274799acafab99a208f0df59119cfd166ed591ea422299627cce613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880802495&rft_id=info:pmid/&rfr_iscdi=true |