Loading…

Two New Convolutions for the Fractional Fourier Transform

In this paper we introduce two novel convolutions for the fractional Fourier transforms, and prove natural algebraic properties of the corresponding multiplications such as commutativity, associativity and distributivity, which may be useful in signal processing and other types of applications. We a...

Full description

Saved in:
Bibliographic Details
Published in:Wireless personal communications 2017-01, Vol.92 (2), p.623-637
Main Authors: Anh, P. K., Castro, L. P., Thao, P. T., Tuan, N. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-84a66313ba274799acafab99a208f0df59119cfd166ed591ea422299627cce613
cites cdi_FETCH-LOGICAL-c418t-84a66313ba274799acafab99a208f0df59119cfd166ed591ea422299627cce613
container_end_page 637
container_issue 2
container_start_page 623
container_title Wireless personal communications
container_volume 92
creator Anh, P. K.
Castro, L. P.
Thao, P. T.
Tuan, N. M.
description In this paper we introduce two novel convolutions for the fractional Fourier transforms, and prove natural algebraic properties of the corresponding multiplications such as commutativity, associativity and distributivity, which may be useful in signal processing and other types of applications. We analyze a consequent comparison with other known convolutions, and establish necessary and sufficient conditions for the solvability of associated convolution equations of both the first and second kind in L 1 ( R ) and L 2 ( R ) spaces. An example satisfying the sufficient and necessary condition for the solvability of the equations is given at the end of the paper .
doi_str_mv 10.1007/s11277-016-3567-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893905262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893905262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-84a66313ba274799acafab99a208f0df59119cfd166ed591ea422299627cce613</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNuCFy_RzGQ32Ryl2CoUvVTwFtI0q1u2m5rsWvz3ZlkPIngaZuZ7j8cj5BLYDTAmbyMASkkZCMoLISk_IhMoJNKS56_HZMIUKioQ8JScxbhlLKkUTohaHXz25A7ZzLefvum72rcxq3zIuneXzYOxw8U02dz3oXYhWwXTxvTfnZOTyjTRXfzMKXmZ369mD3T5vHic3S2pzaHsaJkbITjwtUGZS6WMNZVZp4msrNimKhSAstUGhHCbtDiTI6JSAqW1TgCfkuvRdx_8R-9ip3d1tK5pTOt8HzWUiitWoMCEXv1Btyl1Sj9QJSsZ5qpIFIyUDT7G4Cq9D_XOhC8NTA9l6rFMncrUQ5maJw2OmpjY9s2FX87_ir4BZsV1iQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880802495</pqid></control><display><type>article</type><title>Two New Convolutions for the Fractional Fourier Transform</title><source>Springer Nature</source><creator>Anh, P. K. ; Castro, L. P. ; Thao, P. T. ; Tuan, N. M.</creator><creatorcontrib>Anh, P. K. ; Castro, L. P. ; Thao, P. T. ; Tuan, N. M.</creatorcontrib><description>In this paper we introduce two novel convolutions for the fractional Fourier transforms, and prove natural algebraic properties of the corresponding multiplications such as commutativity, associativity and distributivity, which may be useful in signal processing and other types of applications. We analyze a consequent comparison with other known convolutions, and establish necessary and sufficient conditions for the solvability of associated convolution equations of both the first and second kind in L 1 ( R ) and L 2 ( R ) spaces. An example satisfying the sufficient and necessary condition for the solvability of the equations is given at the end of the paper .</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-016-3567-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Associativity ; Communications Engineering ; Commutativity ; Computer Communication Networks ; Convolution ; Engineering ; Fourier transforms ; Mathematical analysis ; Multiplication ; Networks ; Personal communication ; Signal processing ; Signal,Image and Speech Processing ; Wireless communication</subject><ispartof>Wireless personal communications, 2017-01, Vol.92 (2), p.623-637</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-84a66313ba274799acafab99a208f0df59119cfd166ed591ea422299627cce613</citedby><cites>FETCH-LOGICAL-c418t-84a66313ba274799acafab99a208f0df59119cfd166ed591ea422299627cce613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Anh, P. K.</creatorcontrib><creatorcontrib>Castro, L. P.</creatorcontrib><creatorcontrib>Thao, P. T.</creatorcontrib><creatorcontrib>Tuan, N. M.</creatorcontrib><title>Two New Convolutions for the Fractional Fourier Transform</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>In this paper we introduce two novel convolutions for the fractional Fourier transforms, and prove natural algebraic properties of the corresponding multiplications such as commutativity, associativity and distributivity, which may be useful in signal processing and other types of applications. We analyze a consequent comparison with other known convolutions, and establish necessary and sufficient conditions for the solvability of associated convolution equations of both the first and second kind in L 1 ( R ) and L 2 ( R ) spaces. An example satisfying the sufficient and necessary condition for the solvability of the equations is given at the end of the paper .</description><subject>Algebra</subject><subject>Associativity</subject><subject>Communications Engineering</subject><subject>Commutativity</subject><subject>Computer Communication Networks</subject><subject>Convolution</subject><subject>Engineering</subject><subject>Fourier transforms</subject><subject>Mathematical analysis</subject><subject>Multiplication</subject><subject>Networks</subject><subject>Personal communication</subject><subject>Signal processing</subject><subject>Signal,Image and Speech Processing</subject><subject>Wireless communication</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wNuCFy_RzGQ32Ryl2CoUvVTwFtI0q1u2m5rsWvz3ZlkPIngaZuZ7j8cj5BLYDTAmbyMASkkZCMoLISk_IhMoJNKS56_HZMIUKioQ8JScxbhlLKkUTohaHXz25A7ZzLefvum72rcxq3zIuneXzYOxw8U02dz3oXYhWwXTxvTfnZOTyjTRXfzMKXmZ369mD3T5vHic3S2pzaHsaJkbITjwtUGZS6WMNZVZp4msrNimKhSAstUGhHCbtDiTI6JSAqW1TgCfkuvRdx_8R-9ip3d1tK5pTOt8HzWUiitWoMCEXv1Btyl1Sj9QJSsZ5qpIFIyUDT7G4Cq9D_XOhC8NTA9l6rFMncrUQ5maJw2OmpjY9s2FX87_ir4BZsV1iQ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Anh, P. K.</creator><creator>Castro, L. P.</creator><creator>Thao, P. T.</creator><creator>Tuan, N. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170101</creationdate><title>Two New Convolutions for the Fractional Fourier Transform</title><author>Anh, P. K. ; Castro, L. P. ; Thao, P. T. ; Tuan, N. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-84a66313ba274799acafab99a208f0df59119cfd166ed591ea422299627cce613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Associativity</topic><topic>Communications Engineering</topic><topic>Commutativity</topic><topic>Computer Communication Networks</topic><topic>Convolution</topic><topic>Engineering</topic><topic>Fourier transforms</topic><topic>Mathematical analysis</topic><topic>Multiplication</topic><topic>Networks</topic><topic>Personal communication</topic><topic>Signal processing</topic><topic>Signal,Image and Speech Processing</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anh, P. K.</creatorcontrib><creatorcontrib>Castro, L. P.</creatorcontrib><creatorcontrib>Thao, P. T.</creatorcontrib><creatorcontrib>Tuan, N. M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anh, P. K.</au><au>Castro, L. P.</au><au>Thao, P. T.</au><au>Tuan, N. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two New Convolutions for the Fractional Fourier Transform</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>92</volume><issue>2</issue><spage>623</spage><epage>637</epage><pages>623-637</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>In this paper we introduce two novel convolutions for the fractional Fourier transforms, and prove natural algebraic properties of the corresponding multiplications such as commutativity, associativity and distributivity, which may be useful in signal processing and other types of applications. We analyze a consequent comparison with other known convolutions, and establish necessary and sufficient conditions for the solvability of associated convolution equations of both the first and second kind in L 1 ( R ) and L 2 ( R ) spaces. An example satisfying the sufficient and necessary condition for the solvability of the equations is given at the end of the paper .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11277-016-3567-3</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0929-6212
ispartof Wireless personal communications, 2017-01, Vol.92 (2), p.623-637
issn 0929-6212
1572-834X
language eng
recordid cdi_proquest_miscellaneous_1893905262
source Springer Nature
subjects Algebra
Associativity
Communications Engineering
Commutativity
Computer Communication Networks
Convolution
Engineering
Fourier transforms
Mathematical analysis
Multiplication
Networks
Personal communication
Signal processing
Signal,Image and Speech Processing
Wireless communication
title Two New Convolutions for the Fractional Fourier Transform
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20New%20Convolutions%20for%20the%20Fractional%20Fourier%20Transform&rft.jtitle=Wireless%20personal%20communications&rft.au=Anh,%20P.%20K.&rft.date=2017-01-01&rft.volume=92&rft.issue=2&rft.spage=623&rft.epage=637&rft.pages=623-637&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-016-3567-3&rft_dat=%3Cproquest_cross%3E1893905262%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-84a66313ba274799acafab99a208f0df59119cfd166ed591ea422299627cce613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880802495&rft_id=info:pmid/&rfr_iscdi=true