Loading…

Multicomponent Injectable Hydrogels for Antigen‐Specific Tolerogenic Immune Modulation

Biomaterial scaffolds that enrich and modulate immune cells in situ can form the basis for potent immunotherapies to elicit immunity or reëstablish tolerance. Here, the authors explore the potential of an injectable, porous hydrogel to induce a regulatory T cell (Treg) response by delivering a pepti...

Full description

Saved in:
Bibliographic Details
Published in:Advanced healthcare materials 2017-03, Vol.6 (6), p.np-n/a
Main Authors: Verbeke, Catia S., Gordo, Susana, Schubert, David A., Lewin, Sarah A., Desai, Rajiv M., Dobbins, Jessica, Wucherpfennig, Kai W., Mooney, David J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5453-74b0a8f4e68e3deb963de3ecdbccafadcf17c264be480ed6ff924626911a48133
cites cdi_FETCH-LOGICAL-c5453-74b0a8f4e68e3deb963de3ecdbccafadcf17c264be480ed6ff924626911a48133
container_end_page n/a
container_issue 6
container_start_page np
container_title Advanced healthcare materials
container_volume 6
creator Verbeke, Catia S.
Gordo, Susana
Schubert, David A.
Lewin, Sarah A.
Desai, Rajiv M.
Dobbins, Jessica
Wucherpfennig, Kai W.
Mooney, David J.
description Biomaterial scaffolds that enrich and modulate immune cells in situ can form the basis for potent immunotherapies to elicit immunity or reëstablish tolerance. Here, the authors explore the potential of an injectable, porous hydrogel to induce a regulatory T cell (Treg) response by delivering a peptide antigen to dendritic cells in a noninflammatory context. Two methods are described for delivering the BDC peptide from pore‐forming alginate gels in the nonobese diabetic mouse model of type 1 diabetes: encapsulation in poly(lactide‐co‐glycolide) (PLG) microparticles, or direct conjugation to the alginate polymer. While particle‐based delivery leads to antigen‐specific T cells responses in vivo, PLG particles alter the phenotype of the cells infiltrating the gels. Following gel‐based peptide delivery, transient expansion of endogenous antigen‐specific T cells is observed in the draining lymph nodes. Antigen‐specific T cells accumulate in the gels, and, strikingly, ≈60% of the antigen‐specific CD4+ T cells in the gels are Tregs. Antigen‐specific T cells are also enriched in the pancreatic islets, and administration of peptide‐loaded gels does not accelerate diabetes. This work demonstrates that a noninflammatory biomaterial system can generate antigen‐specific Tregs in vivo, which may enable the development of new therapies for the treatment of transplant rejection or autoimmune diseases. A biomaterial system to expand antigen‐specific regulatory T cells (Tregs) for tolerance induction is described. A diabetes‐related peptide antigen is delivered locally to dendritic cells that are enriched within an injectable, noninflammatory hydrogel. Following subcutaneous administration in nonobese diabetic mice, a model of type 1 diabetes, antigen‐specific Tregs are enriched in the gels and in the pancreatic islets.
doi_str_mv 10.1002/adhm.201600773
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893910135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1888979104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5453-74b0a8f4e68e3deb963de3ecdbccafadcf17c264be480ed6ff924626911a48133</originalsourceid><addsrcrecordid>eNqNkb9u2zAQxomgQRw4WTMWArp0sUtSFP-MhpvWBmJkSAJkEyjqmMqgSFeUEHjLI_QZ-ySlYdcFusQcjt_wuw939yF0Q_CUYEy_6PpHO6WYcIyFyM_QJSWKTigv1IejZniErmNc4_R4QbgkF2hEJUlK4Ev0vBpc35jQboIH32dLvwbT68pBttjWXXgBFzMbumzm--YF_O-3Xw8bMI1tTPYYHOwIn_SybQcP2SrUg9N9E_wVOrfaRbg-_GP09O32cb6Y3N1_X85ndxNTsCKfCFZhLS0DLiGvoVI81RxMXRmjra6NJcKkLSpgEkPNrVWUccoVIZpJkudj9Hnvu-nCzwFiX7ZNNOCc9hCGWBKpckUwyYsTUCmVSDA7AeXp6lymCcbo03_oOgydTzsnSihBpWC7Mad7ynQhxg5suemaVnfbkuByF2a5C7M8hpkaPh5sh6qF-oj_jS4Bag-8Ng6279iVs6-L1T_zPyoOq_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1879728743</pqid></control><display><type>article</type><title>Multicomponent Injectable Hydrogels for Antigen‐Specific Tolerogenic Immune Modulation</title><source>Wiley</source><creator>Verbeke, Catia S. ; Gordo, Susana ; Schubert, David A. ; Lewin, Sarah A. ; Desai, Rajiv M. ; Dobbins, Jessica ; Wucherpfennig, Kai W. ; Mooney, David J.</creator><creatorcontrib>Verbeke, Catia S. ; Gordo, Susana ; Schubert, David A. ; Lewin, Sarah A. ; Desai, Rajiv M. ; Dobbins, Jessica ; Wucherpfennig, Kai W. ; Mooney, David J.</creatorcontrib><description>Biomaterial scaffolds that enrich and modulate immune cells in situ can form the basis for potent immunotherapies to elicit immunity or reëstablish tolerance. Here, the authors explore the potential of an injectable, porous hydrogel to induce a regulatory T cell (Treg) response by delivering a peptide antigen to dendritic cells in a noninflammatory context. Two methods are described for delivering the BDC peptide from pore‐forming alginate gels in the nonobese diabetic mouse model of type 1 diabetes: encapsulation in poly(lactide‐co‐glycolide) (PLG) microparticles, or direct conjugation to the alginate polymer. While particle‐based delivery leads to antigen‐specific T cells responses in vivo, PLG particles alter the phenotype of the cells infiltrating the gels. Following gel‐based peptide delivery, transient expansion of endogenous antigen‐specific T cells is observed in the draining lymph nodes. Antigen‐specific T cells accumulate in the gels, and, strikingly, ≈60% of the antigen‐specific CD4+ T cells in the gels are Tregs. Antigen‐specific T cells are also enriched in the pancreatic islets, and administration of peptide‐loaded gels does not accelerate diabetes. This work demonstrates that a noninflammatory biomaterial system can generate antigen‐specific Tregs in vivo, which may enable the development of new therapies for the treatment of transplant rejection or autoimmune diseases. A biomaterial system to expand antigen‐specific regulatory T cells (Tregs) for tolerance induction is described. A diabetes‐related peptide antigen is delivered locally to dendritic cells that are enriched within an injectable, noninflammatory hydrogel. Following subcutaneous administration in nonobese diabetic mice, a model of type 1 diabetes, antigen‐specific Tregs are enriched in the gels and in the pancreatic islets.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.201600773</identifier><identifier>PMID: 28116870</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>alginate hydrogels ; Animals ; Antigens - chemistry ; Antigens - pharmacology ; antigen‐specific tolerance ; Biomaterials ; Biomedical materials ; dendritic cells ; Diabetes Mellitus, Experimental - immunology ; Diabetes Mellitus, Experimental - pathology ; Diabetes Mellitus, Experimental - therapy ; Diabetes Mellitus, Type 1 - immunology ; Diabetes Mellitus, Type 1 - pathology ; Diabetes Mellitus, Type 1 - therapy ; Enrichment ; Gels ; Hydrogels - chemistry ; Hydrogels - pharmacology ; Immune Tolerance - drug effects ; immunotherapy ; Lactic Acid - chemistry ; Lactic Acid - pharmacology ; Lymphocytes ; Mathematical models ; Mice ; Mice, Inbred NOD ; Peptides ; Polyglycolic Acid - chemistry ; Polyglycolic Acid - pharmacology ; regulatory T cells ; Surgical implants ; T-Lymphocytes, Regulatory - immunology ; T-Lymphocytes, Regulatory - pathology</subject><ispartof>Advanced healthcare materials, 2017-03, Vol.6 (6), p.np-n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5453-74b0a8f4e68e3deb963de3ecdbccafadcf17c264be480ed6ff924626911a48133</citedby><cites>FETCH-LOGICAL-c5453-74b0a8f4e68e3deb963de3ecdbccafadcf17c264be480ed6ff924626911a48133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28116870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Verbeke, Catia S.</creatorcontrib><creatorcontrib>Gordo, Susana</creatorcontrib><creatorcontrib>Schubert, David A.</creatorcontrib><creatorcontrib>Lewin, Sarah A.</creatorcontrib><creatorcontrib>Desai, Rajiv M.</creatorcontrib><creatorcontrib>Dobbins, Jessica</creatorcontrib><creatorcontrib>Wucherpfennig, Kai W.</creatorcontrib><creatorcontrib>Mooney, David J.</creatorcontrib><title>Multicomponent Injectable Hydrogels for Antigen‐Specific Tolerogenic Immune Modulation</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Biomaterial scaffolds that enrich and modulate immune cells in situ can form the basis for potent immunotherapies to elicit immunity or reëstablish tolerance. Here, the authors explore the potential of an injectable, porous hydrogel to induce a regulatory T cell (Treg) response by delivering a peptide antigen to dendritic cells in a noninflammatory context. Two methods are described for delivering the BDC peptide from pore‐forming alginate gels in the nonobese diabetic mouse model of type 1 diabetes: encapsulation in poly(lactide‐co‐glycolide) (PLG) microparticles, or direct conjugation to the alginate polymer. While particle‐based delivery leads to antigen‐specific T cells responses in vivo, PLG particles alter the phenotype of the cells infiltrating the gels. Following gel‐based peptide delivery, transient expansion of endogenous antigen‐specific T cells is observed in the draining lymph nodes. Antigen‐specific T cells accumulate in the gels, and, strikingly, ≈60% of the antigen‐specific CD4+ T cells in the gels are Tregs. Antigen‐specific T cells are also enriched in the pancreatic islets, and administration of peptide‐loaded gels does not accelerate diabetes. This work demonstrates that a noninflammatory biomaterial system can generate antigen‐specific Tregs in vivo, which may enable the development of new therapies for the treatment of transplant rejection or autoimmune diseases. A biomaterial system to expand antigen‐specific regulatory T cells (Tregs) for tolerance induction is described. A diabetes‐related peptide antigen is delivered locally to dendritic cells that are enriched within an injectable, noninflammatory hydrogel. Following subcutaneous administration in nonobese diabetic mice, a model of type 1 diabetes, antigen‐specific Tregs are enriched in the gels and in the pancreatic islets.</description><subject>alginate hydrogels</subject><subject>Animals</subject><subject>Antigens - chemistry</subject><subject>Antigens - pharmacology</subject><subject>antigen‐specific tolerance</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>dendritic cells</subject><subject>Diabetes Mellitus, Experimental - immunology</subject><subject>Diabetes Mellitus, Experimental - pathology</subject><subject>Diabetes Mellitus, Experimental - therapy</subject><subject>Diabetes Mellitus, Type 1 - immunology</subject><subject>Diabetes Mellitus, Type 1 - pathology</subject><subject>Diabetes Mellitus, Type 1 - therapy</subject><subject>Enrichment</subject><subject>Gels</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - pharmacology</subject><subject>Immune Tolerance - drug effects</subject><subject>immunotherapy</subject><subject>Lactic Acid - chemistry</subject><subject>Lactic Acid - pharmacology</subject><subject>Lymphocytes</subject><subject>Mathematical models</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Peptides</subject><subject>Polyglycolic Acid - chemistry</subject><subject>Polyglycolic Acid - pharmacology</subject><subject>regulatory T cells</subject><subject>Surgical implants</subject><subject>T-Lymphocytes, Regulatory - immunology</subject><subject>T-Lymphocytes, Regulatory - pathology</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkb9u2zAQxomgQRw4WTMWArp0sUtSFP-MhpvWBmJkSAJkEyjqmMqgSFeUEHjLI_QZ-ySlYdcFusQcjt_wuw939yF0Q_CUYEy_6PpHO6WYcIyFyM_QJSWKTigv1IejZniErmNc4_R4QbgkF2hEJUlK4Ev0vBpc35jQboIH32dLvwbT68pBttjWXXgBFzMbumzm--YF_O-3Xw8bMI1tTPYYHOwIn_SybQcP2SrUg9N9E_wVOrfaRbg-_GP09O32cb6Y3N1_X85ndxNTsCKfCFZhLS0DLiGvoVI81RxMXRmjra6NJcKkLSpgEkPNrVWUccoVIZpJkudj9Hnvu-nCzwFiX7ZNNOCc9hCGWBKpckUwyYsTUCmVSDA7AeXp6lymCcbo03_oOgydTzsnSihBpWC7Mad7ynQhxg5suemaVnfbkuByF2a5C7M8hpkaPh5sh6qF-oj_jS4Bag-8Ng6279iVs6-L1T_zPyoOq_A</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Verbeke, Catia S.</creator><creator>Gordo, Susana</creator><creator>Schubert, David A.</creator><creator>Lewin, Sarah A.</creator><creator>Desai, Rajiv M.</creator><creator>Dobbins, Jessica</creator><creator>Wucherpfennig, Kai W.</creator><creator>Mooney, David J.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>201703</creationdate><title>Multicomponent Injectable Hydrogels for Antigen‐Specific Tolerogenic Immune Modulation</title><author>Verbeke, Catia S. ; Gordo, Susana ; Schubert, David A. ; Lewin, Sarah A. ; Desai, Rajiv M. ; Dobbins, Jessica ; Wucherpfennig, Kai W. ; Mooney, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5453-74b0a8f4e68e3deb963de3ecdbccafadcf17c264be480ed6ff924626911a48133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>alginate hydrogels</topic><topic>Animals</topic><topic>Antigens - chemistry</topic><topic>Antigens - pharmacology</topic><topic>antigen‐specific tolerance</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>dendritic cells</topic><topic>Diabetes Mellitus, Experimental - immunology</topic><topic>Diabetes Mellitus, Experimental - pathology</topic><topic>Diabetes Mellitus, Experimental - therapy</topic><topic>Diabetes Mellitus, Type 1 - immunology</topic><topic>Diabetes Mellitus, Type 1 - pathology</topic><topic>Diabetes Mellitus, Type 1 - therapy</topic><topic>Enrichment</topic><topic>Gels</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - pharmacology</topic><topic>Immune Tolerance - drug effects</topic><topic>immunotherapy</topic><topic>Lactic Acid - chemistry</topic><topic>Lactic Acid - pharmacology</topic><topic>Lymphocytes</topic><topic>Mathematical models</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Peptides</topic><topic>Polyglycolic Acid - chemistry</topic><topic>Polyglycolic Acid - pharmacology</topic><topic>regulatory T cells</topic><topic>Surgical implants</topic><topic>T-Lymphocytes, Regulatory - immunology</topic><topic>T-Lymphocytes, Regulatory - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verbeke, Catia S.</creatorcontrib><creatorcontrib>Gordo, Susana</creatorcontrib><creatorcontrib>Schubert, David A.</creatorcontrib><creatorcontrib>Lewin, Sarah A.</creatorcontrib><creatorcontrib>Desai, Rajiv M.</creatorcontrib><creatorcontrib>Dobbins, Jessica</creatorcontrib><creatorcontrib>Wucherpfennig, Kai W.</creatorcontrib><creatorcontrib>Mooney, David J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verbeke, Catia S.</au><au>Gordo, Susana</au><au>Schubert, David A.</au><au>Lewin, Sarah A.</au><au>Desai, Rajiv M.</au><au>Dobbins, Jessica</au><au>Wucherpfennig, Kai W.</au><au>Mooney, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicomponent Injectable Hydrogels for Antigen‐Specific Tolerogenic Immune Modulation</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2017-03</date><risdate>2017</risdate><volume>6</volume><issue>6</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Biomaterial scaffolds that enrich and modulate immune cells in situ can form the basis for potent immunotherapies to elicit immunity or reëstablish tolerance. Here, the authors explore the potential of an injectable, porous hydrogel to induce a regulatory T cell (Treg) response by delivering a peptide antigen to dendritic cells in a noninflammatory context. Two methods are described for delivering the BDC peptide from pore‐forming alginate gels in the nonobese diabetic mouse model of type 1 diabetes: encapsulation in poly(lactide‐co‐glycolide) (PLG) microparticles, or direct conjugation to the alginate polymer. While particle‐based delivery leads to antigen‐specific T cells responses in vivo, PLG particles alter the phenotype of the cells infiltrating the gels. Following gel‐based peptide delivery, transient expansion of endogenous antigen‐specific T cells is observed in the draining lymph nodes. Antigen‐specific T cells accumulate in the gels, and, strikingly, ≈60% of the antigen‐specific CD4+ T cells in the gels are Tregs. Antigen‐specific T cells are also enriched in the pancreatic islets, and administration of peptide‐loaded gels does not accelerate diabetes. This work demonstrates that a noninflammatory biomaterial system can generate antigen‐specific Tregs in vivo, which may enable the development of new therapies for the treatment of transplant rejection or autoimmune diseases. A biomaterial system to expand antigen‐specific regulatory T cells (Tregs) for tolerance induction is described. A diabetes‐related peptide antigen is delivered locally to dendritic cells that are enriched within an injectable, noninflammatory hydrogel. Following subcutaneous administration in nonobese diabetic mice, a model of type 1 diabetes, antigen‐specific Tregs are enriched in the gels and in the pancreatic islets.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28116870</pmid><doi>10.1002/adhm.201600773</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2017-03, Vol.6 (6), p.np-n/a
issn 2192-2640
2192-2659
language eng
recordid cdi_proquest_miscellaneous_1893910135
source Wiley
subjects alginate hydrogels
Animals
Antigens - chemistry
Antigens - pharmacology
antigen‐specific tolerance
Biomaterials
Biomedical materials
dendritic cells
Diabetes Mellitus, Experimental - immunology
Diabetes Mellitus, Experimental - pathology
Diabetes Mellitus, Experimental - therapy
Diabetes Mellitus, Type 1 - immunology
Diabetes Mellitus, Type 1 - pathology
Diabetes Mellitus, Type 1 - therapy
Enrichment
Gels
Hydrogels - chemistry
Hydrogels - pharmacology
Immune Tolerance - drug effects
immunotherapy
Lactic Acid - chemistry
Lactic Acid - pharmacology
Lymphocytes
Mathematical models
Mice
Mice, Inbred NOD
Peptides
Polyglycolic Acid - chemistry
Polyglycolic Acid - pharmacology
regulatory T cells
Surgical implants
T-Lymphocytes, Regulatory - immunology
T-Lymphocytes, Regulatory - pathology
title Multicomponent Injectable Hydrogels for Antigen‐Specific Tolerogenic Immune Modulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A44%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicomponent%20Injectable%20Hydrogels%20for%20Antigen%E2%80%90Specific%20Tolerogenic%20Immune%20Modulation&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Verbeke,%20Catia%20S.&rft.date=2017-03&rft.volume=6&rft.issue=6&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.201600773&rft_dat=%3Cproquest_cross%3E1888979104%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5453-74b0a8f4e68e3deb963de3ecdbccafadcf17c264be480ed6ff924626911a48133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1879728743&rft_id=info:pmid/28116870&rfr_iscdi=true