Loading…
Multicomponent Injectable Hydrogels for Antigen‐Specific Tolerogenic Immune Modulation
Biomaterial scaffolds that enrich and modulate immune cells in situ can form the basis for potent immunotherapies to elicit immunity or reëstablish tolerance. Here, the authors explore the potential of an injectable, porous hydrogel to induce a regulatory T cell (Treg) response by delivering a pepti...
Saved in:
Published in: | Advanced healthcare materials 2017-03, Vol.6 (6), p.np-n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5453-74b0a8f4e68e3deb963de3ecdbccafadcf17c264be480ed6ff924626911a48133 |
---|---|
cites | cdi_FETCH-LOGICAL-c5453-74b0a8f4e68e3deb963de3ecdbccafadcf17c264be480ed6ff924626911a48133 |
container_end_page | n/a |
container_issue | 6 |
container_start_page | np |
container_title | Advanced healthcare materials |
container_volume | 6 |
creator | Verbeke, Catia S. Gordo, Susana Schubert, David A. Lewin, Sarah A. Desai, Rajiv M. Dobbins, Jessica Wucherpfennig, Kai W. Mooney, David J. |
description | Biomaterial scaffolds that enrich and modulate immune cells in situ can form the basis for potent immunotherapies to elicit immunity or reëstablish tolerance. Here, the authors explore the potential of an injectable, porous hydrogel to induce a regulatory T cell (Treg) response by delivering a peptide antigen to dendritic cells in a noninflammatory context. Two methods are described for delivering the BDC peptide from pore‐forming alginate gels in the nonobese diabetic mouse model of type 1 diabetes: encapsulation in poly(lactide‐co‐glycolide) (PLG) microparticles, or direct conjugation to the alginate polymer. While particle‐based delivery leads to antigen‐specific T cells responses in vivo, PLG particles alter the phenotype of the cells infiltrating the gels. Following gel‐based peptide delivery, transient expansion of endogenous antigen‐specific T cells is observed in the draining lymph nodes. Antigen‐specific T cells accumulate in the gels, and, strikingly, ≈60% of the antigen‐specific CD4+ T cells in the gels are Tregs. Antigen‐specific T cells are also enriched in the pancreatic islets, and administration of peptide‐loaded gels does not accelerate diabetes. This work demonstrates that a noninflammatory biomaterial system can generate antigen‐specific Tregs in vivo, which may enable the development of new therapies for the treatment of transplant rejection or autoimmune diseases.
A biomaterial system to expand antigen‐specific regulatory T cells (Tregs) for tolerance induction is described. A diabetes‐related peptide antigen is delivered locally to dendritic cells that are enriched within an injectable, noninflammatory hydrogel. Following subcutaneous administration in nonobese diabetic mice, a model of type 1 diabetes, antigen‐specific Tregs are enriched in the gels and in the pancreatic islets. |
doi_str_mv | 10.1002/adhm.201600773 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893910135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1888979104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5453-74b0a8f4e68e3deb963de3ecdbccafadcf17c264be480ed6ff924626911a48133</originalsourceid><addsrcrecordid>eNqNkb9u2zAQxomgQRw4WTMWArp0sUtSFP-MhpvWBmJkSAJkEyjqmMqgSFeUEHjLI_QZ-ySlYdcFusQcjt_wuw939yF0Q_CUYEy_6PpHO6WYcIyFyM_QJSWKTigv1IejZniErmNc4_R4QbgkF2hEJUlK4Ev0vBpc35jQboIH32dLvwbT68pBttjWXXgBFzMbumzm--YF_O-3Xw8bMI1tTPYYHOwIn_SybQcP2SrUg9N9E_wVOrfaRbg-_GP09O32cb6Y3N1_X85ndxNTsCKfCFZhLS0DLiGvoVI81RxMXRmjra6NJcKkLSpgEkPNrVWUccoVIZpJkudj9Hnvu-nCzwFiX7ZNNOCc9hCGWBKpckUwyYsTUCmVSDA7AeXp6lymCcbo03_oOgydTzsnSihBpWC7Mad7ynQhxg5suemaVnfbkuByF2a5C7M8hpkaPh5sh6qF-oj_jS4Bag-8Ng6279iVs6-L1T_zPyoOq_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1879728743</pqid></control><display><type>article</type><title>Multicomponent Injectable Hydrogels for Antigen‐Specific Tolerogenic Immune Modulation</title><source>Wiley</source><creator>Verbeke, Catia S. ; Gordo, Susana ; Schubert, David A. ; Lewin, Sarah A. ; Desai, Rajiv M. ; Dobbins, Jessica ; Wucherpfennig, Kai W. ; Mooney, David J.</creator><creatorcontrib>Verbeke, Catia S. ; Gordo, Susana ; Schubert, David A. ; Lewin, Sarah A. ; Desai, Rajiv M. ; Dobbins, Jessica ; Wucherpfennig, Kai W. ; Mooney, David J.</creatorcontrib><description>Biomaterial scaffolds that enrich and modulate immune cells in situ can form the basis for potent immunotherapies to elicit immunity or reëstablish tolerance. Here, the authors explore the potential of an injectable, porous hydrogel to induce a regulatory T cell (Treg) response by delivering a peptide antigen to dendritic cells in a noninflammatory context. Two methods are described for delivering the BDC peptide from pore‐forming alginate gels in the nonobese diabetic mouse model of type 1 diabetes: encapsulation in poly(lactide‐co‐glycolide) (PLG) microparticles, or direct conjugation to the alginate polymer. While particle‐based delivery leads to antigen‐specific T cells responses in vivo, PLG particles alter the phenotype of the cells infiltrating the gels. Following gel‐based peptide delivery, transient expansion of endogenous antigen‐specific T cells is observed in the draining lymph nodes. Antigen‐specific T cells accumulate in the gels, and, strikingly, ≈60% of the antigen‐specific CD4+ T cells in the gels are Tregs. Antigen‐specific T cells are also enriched in the pancreatic islets, and administration of peptide‐loaded gels does not accelerate diabetes. This work demonstrates that a noninflammatory biomaterial system can generate antigen‐specific Tregs in vivo, which may enable the development of new therapies for the treatment of transplant rejection or autoimmune diseases.
A biomaterial system to expand antigen‐specific regulatory T cells (Tregs) for tolerance induction is described. A diabetes‐related peptide antigen is delivered locally to dendritic cells that are enriched within an injectable, noninflammatory hydrogel. Following subcutaneous administration in nonobese diabetic mice, a model of type 1 diabetes, antigen‐specific Tregs are enriched in the gels and in the pancreatic islets.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.201600773</identifier><identifier>PMID: 28116870</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>alginate hydrogels ; Animals ; Antigens - chemistry ; Antigens - pharmacology ; antigen‐specific tolerance ; Biomaterials ; Biomedical materials ; dendritic cells ; Diabetes Mellitus, Experimental - immunology ; Diabetes Mellitus, Experimental - pathology ; Diabetes Mellitus, Experimental - therapy ; Diabetes Mellitus, Type 1 - immunology ; Diabetes Mellitus, Type 1 - pathology ; Diabetes Mellitus, Type 1 - therapy ; Enrichment ; Gels ; Hydrogels - chemistry ; Hydrogels - pharmacology ; Immune Tolerance - drug effects ; immunotherapy ; Lactic Acid - chemistry ; Lactic Acid - pharmacology ; Lymphocytes ; Mathematical models ; Mice ; Mice, Inbred NOD ; Peptides ; Polyglycolic Acid - chemistry ; Polyglycolic Acid - pharmacology ; regulatory T cells ; Surgical implants ; T-Lymphocytes, Regulatory - immunology ; T-Lymphocytes, Regulatory - pathology</subject><ispartof>Advanced healthcare materials, 2017-03, Vol.6 (6), p.np-n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5453-74b0a8f4e68e3deb963de3ecdbccafadcf17c264be480ed6ff924626911a48133</citedby><cites>FETCH-LOGICAL-c5453-74b0a8f4e68e3deb963de3ecdbccafadcf17c264be480ed6ff924626911a48133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28116870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Verbeke, Catia S.</creatorcontrib><creatorcontrib>Gordo, Susana</creatorcontrib><creatorcontrib>Schubert, David A.</creatorcontrib><creatorcontrib>Lewin, Sarah A.</creatorcontrib><creatorcontrib>Desai, Rajiv M.</creatorcontrib><creatorcontrib>Dobbins, Jessica</creatorcontrib><creatorcontrib>Wucherpfennig, Kai W.</creatorcontrib><creatorcontrib>Mooney, David J.</creatorcontrib><title>Multicomponent Injectable Hydrogels for Antigen‐Specific Tolerogenic Immune Modulation</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Biomaterial scaffolds that enrich and modulate immune cells in situ can form the basis for potent immunotherapies to elicit immunity or reëstablish tolerance. Here, the authors explore the potential of an injectable, porous hydrogel to induce a regulatory T cell (Treg) response by delivering a peptide antigen to dendritic cells in a noninflammatory context. Two methods are described for delivering the BDC peptide from pore‐forming alginate gels in the nonobese diabetic mouse model of type 1 diabetes: encapsulation in poly(lactide‐co‐glycolide) (PLG) microparticles, or direct conjugation to the alginate polymer. While particle‐based delivery leads to antigen‐specific T cells responses in vivo, PLG particles alter the phenotype of the cells infiltrating the gels. Following gel‐based peptide delivery, transient expansion of endogenous antigen‐specific T cells is observed in the draining lymph nodes. Antigen‐specific T cells accumulate in the gels, and, strikingly, ≈60% of the antigen‐specific CD4+ T cells in the gels are Tregs. Antigen‐specific T cells are also enriched in the pancreatic islets, and administration of peptide‐loaded gels does not accelerate diabetes. This work demonstrates that a noninflammatory biomaterial system can generate antigen‐specific Tregs in vivo, which may enable the development of new therapies for the treatment of transplant rejection or autoimmune diseases.
A biomaterial system to expand antigen‐specific regulatory T cells (Tregs) for tolerance induction is described. A diabetes‐related peptide antigen is delivered locally to dendritic cells that are enriched within an injectable, noninflammatory hydrogel. Following subcutaneous administration in nonobese diabetic mice, a model of type 1 diabetes, antigen‐specific Tregs are enriched in the gels and in the pancreatic islets.</description><subject>alginate hydrogels</subject><subject>Animals</subject><subject>Antigens - chemistry</subject><subject>Antigens - pharmacology</subject><subject>antigen‐specific tolerance</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>dendritic cells</subject><subject>Diabetes Mellitus, Experimental - immunology</subject><subject>Diabetes Mellitus, Experimental - pathology</subject><subject>Diabetes Mellitus, Experimental - therapy</subject><subject>Diabetes Mellitus, Type 1 - immunology</subject><subject>Diabetes Mellitus, Type 1 - pathology</subject><subject>Diabetes Mellitus, Type 1 - therapy</subject><subject>Enrichment</subject><subject>Gels</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - pharmacology</subject><subject>Immune Tolerance - drug effects</subject><subject>immunotherapy</subject><subject>Lactic Acid - chemistry</subject><subject>Lactic Acid - pharmacology</subject><subject>Lymphocytes</subject><subject>Mathematical models</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Peptides</subject><subject>Polyglycolic Acid - chemistry</subject><subject>Polyglycolic Acid - pharmacology</subject><subject>regulatory T cells</subject><subject>Surgical implants</subject><subject>T-Lymphocytes, Regulatory - immunology</subject><subject>T-Lymphocytes, Regulatory - pathology</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkb9u2zAQxomgQRw4WTMWArp0sUtSFP-MhpvWBmJkSAJkEyjqmMqgSFeUEHjLI_QZ-ySlYdcFusQcjt_wuw939yF0Q_CUYEy_6PpHO6WYcIyFyM_QJSWKTigv1IejZniErmNc4_R4QbgkF2hEJUlK4Ev0vBpc35jQboIH32dLvwbT68pBttjWXXgBFzMbumzm--YF_O-3Xw8bMI1tTPYYHOwIn_SybQcP2SrUg9N9E_wVOrfaRbg-_GP09O32cb6Y3N1_X85ndxNTsCKfCFZhLS0DLiGvoVI81RxMXRmjra6NJcKkLSpgEkPNrVWUccoVIZpJkudj9Hnvu-nCzwFiX7ZNNOCc9hCGWBKpckUwyYsTUCmVSDA7AeXp6lymCcbo03_oOgydTzsnSihBpWC7Mad7ynQhxg5suemaVnfbkuByF2a5C7M8hpkaPh5sh6qF-oj_jS4Bag-8Ng6279iVs6-L1T_zPyoOq_A</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Verbeke, Catia S.</creator><creator>Gordo, Susana</creator><creator>Schubert, David A.</creator><creator>Lewin, Sarah A.</creator><creator>Desai, Rajiv M.</creator><creator>Dobbins, Jessica</creator><creator>Wucherpfennig, Kai W.</creator><creator>Mooney, David J.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>201703</creationdate><title>Multicomponent Injectable Hydrogels for Antigen‐Specific Tolerogenic Immune Modulation</title><author>Verbeke, Catia S. ; Gordo, Susana ; Schubert, David A. ; Lewin, Sarah A. ; Desai, Rajiv M. ; Dobbins, Jessica ; Wucherpfennig, Kai W. ; Mooney, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5453-74b0a8f4e68e3deb963de3ecdbccafadcf17c264be480ed6ff924626911a48133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>alginate hydrogels</topic><topic>Animals</topic><topic>Antigens - chemistry</topic><topic>Antigens - pharmacology</topic><topic>antigen‐specific tolerance</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>dendritic cells</topic><topic>Diabetes Mellitus, Experimental - immunology</topic><topic>Diabetes Mellitus, Experimental - pathology</topic><topic>Diabetes Mellitus, Experimental - therapy</topic><topic>Diabetes Mellitus, Type 1 - immunology</topic><topic>Diabetes Mellitus, Type 1 - pathology</topic><topic>Diabetes Mellitus, Type 1 - therapy</topic><topic>Enrichment</topic><topic>Gels</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - pharmacology</topic><topic>Immune Tolerance - drug effects</topic><topic>immunotherapy</topic><topic>Lactic Acid - chemistry</topic><topic>Lactic Acid - pharmacology</topic><topic>Lymphocytes</topic><topic>Mathematical models</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Peptides</topic><topic>Polyglycolic Acid - chemistry</topic><topic>Polyglycolic Acid - pharmacology</topic><topic>regulatory T cells</topic><topic>Surgical implants</topic><topic>T-Lymphocytes, Regulatory - immunology</topic><topic>T-Lymphocytes, Regulatory - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verbeke, Catia S.</creatorcontrib><creatorcontrib>Gordo, Susana</creatorcontrib><creatorcontrib>Schubert, David A.</creatorcontrib><creatorcontrib>Lewin, Sarah A.</creatorcontrib><creatorcontrib>Desai, Rajiv M.</creatorcontrib><creatorcontrib>Dobbins, Jessica</creatorcontrib><creatorcontrib>Wucherpfennig, Kai W.</creatorcontrib><creatorcontrib>Mooney, David J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verbeke, Catia S.</au><au>Gordo, Susana</au><au>Schubert, David A.</au><au>Lewin, Sarah A.</au><au>Desai, Rajiv M.</au><au>Dobbins, Jessica</au><au>Wucherpfennig, Kai W.</au><au>Mooney, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicomponent Injectable Hydrogels for Antigen‐Specific Tolerogenic Immune Modulation</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2017-03</date><risdate>2017</risdate><volume>6</volume><issue>6</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Biomaterial scaffolds that enrich and modulate immune cells in situ can form the basis for potent immunotherapies to elicit immunity or reëstablish tolerance. Here, the authors explore the potential of an injectable, porous hydrogel to induce a regulatory T cell (Treg) response by delivering a peptide antigen to dendritic cells in a noninflammatory context. Two methods are described for delivering the BDC peptide from pore‐forming alginate gels in the nonobese diabetic mouse model of type 1 diabetes: encapsulation in poly(lactide‐co‐glycolide) (PLG) microparticles, or direct conjugation to the alginate polymer. While particle‐based delivery leads to antigen‐specific T cells responses in vivo, PLG particles alter the phenotype of the cells infiltrating the gels. Following gel‐based peptide delivery, transient expansion of endogenous antigen‐specific T cells is observed in the draining lymph nodes. Antigen‐specific T cells accumulate in the gels, and, strikingly, ≈60% of the antigen‐specific CD4+ T cells in the gels are Tregs. Antigen‐specific T cells are also enriched in the pancreatic islets, and administration of peptide‐loaded gels does not accelerate diabetes. This work demonstrates that a noninflammatory biomaterial system can generate antigen‐specific Tregs in vivo, which may enable the development of new therapies for the treatment of transplant rejection or autoimmune diseases.
A biomaterial system to expand antigen‐specific regulatory T cells (Tregs) for tolerance induction is described. A diabetes‐related peptide antigen is delivered locally to dendritic cells that are enriched within an injectable, noninflammatory hydrogel. Following subcutaneous administration in nonobese diabetic mice, a model of type 1 diabetes, antigen‐specific Tregs are enriched in the gels and in the pancreatic islets.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28116870</pmid><doi>10.1002/adhm.201600773</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2017-03, Vol.6 (6), p.np-n/a |
issn | 2192-2640 2192-2659 |
language | eng |
recordid | cdi_proquest_miscellaneous_1893910135 |
source | Wiley |
subjects | alginate hydrogels Animals Antigens - chemistry Antigens - pharmacology antigen‐specific tolerance Biomaterials Biomedical materials dendritic cells Diabetes Mellitus, Experimental - immunology Diabetes Mellitus, Experimental - pathology Diabetes Mellitus, Experimental - therapy Diabetes Mellitus, Type 1 - immunology Diabetes Mellitus, Type 1 - pathology Diabetes Mellitus, Type 1 - therapy Enrichment Gels Hydrogels - chemistry Hydrogels - pharmacology Immune Tolerance - drug effects immunotherapy Lactic Acid - chemistry Lactic Acid - pharmacology Lymphocytes Mathematical models Mice Mice, Inbred NOD Peptides Polyglycolic Acid - chemistry Polyglycolic Acid - pharmacology regulatory T cells Surgical implants T-Lymphocytes, Regulatory - immunology T-Lymphocytes, Regulatory - pathology |
title | Multicomponent Injectable Hydrogels for Antigen‐Specific Tolerogenic Immune Modulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A44%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicomponent%20Injectable%20Hydrogels%20for%20Antigen%E2%80%90Specific%20Tolerogenic%20Immune%20Modulation&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Verbeke,%20Catia%20S.&rft.date=2017-03&rft.volume=6&rft.issue=6&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.201600773&rft_dat=%3Cproquest_cross%3E1888979104%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5453-74b0a8f4e68e3deb963de3ecdbccafadcf17c264be480ed6ff924626911a48133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1879728743&rft_id=info:pmid/28116870&rfr_iscdi=true |