Loading…

Intrinsic electrical transport and performance projections of synthetic monolayer MoS sub(2) devices

We demonstrate monolayer (1L) MoS sub(2) grown by chemical vapor deposition (CVD) with transport properties comparable to those of the best exfoliated 1L devices over a wide range of carrier densities (up to ~10 super(13) cm super(-2)) and temperatures (80-500 K). Transfer length measurements decoup...

Full description

Saved in:
Bibliographic Details
Published in:2d materials 2017-03, Vol.4 (1), p.011009-011009
Main Authors: Smithe, Kirby K H, English, Chris D, Suryavanshi, Saurabh V, Pop, Eric
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 011009
container_issue 1
container_start_page 011009
container_title 2d materials
container_volume 4
creator Smithe, Kirby K H
English, Chris D
Suryavanshi, Saurabh V
Pop, Eric
description We demonstrate monolayer (1L) MoS sub(2) grown by chemical vapor deposition (CVD) with transport properties comparable to those of the best exfoliated 1L devices over a wide range of carrier densities (up to ~10 super(13) cm super(-2)) and temperatures (80-500 K). Transfer length measurements decouple the intrinsic material mobility from the contact resistance, at practical carrier densities (>10 super(12) cm super(-2)). We demonstrate the highest current density reported to date (~270 [mu]A [mu]m super(-1) or 44 MA cm super(-2)) at 300 K for an 80 nm long device from CVD-grown 1L MoS sub(2). Using simulations, we discuss what improvements of 1L MoS sub(2) are still required to meet technology roadmap requirements for low power and high performance applications. Such results are an important step towards large-area electronics based on 1L semiconductors.
doi_str_mv 10.1088/2053-1583/4/1/011009
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893910581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893910581</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_18939105813</originalsourceid><addsrcrecordid>eNqVjDFPwzAQhS0EEhX0HzDcWIaSu7opzoxAMHRq98o4F-HKsYPPQeq_JwOqujK9T0_fe0o9ED4RGlOtsNZLqo2u1hVVSITYXKnZub6-4Fs1FzkiIj1v9Jo2M9V-xJJ9FO-AA7uJnQ1Qso0ypFzAxhYGzl3KvY2OYcjpOGk-RYHUgZxi-eIyrfsUU7AnzrBNO5Dxc7F6hJZ_vGO5VzedDcLzv7xTi7fX_cv7cnr7HlnKoffiOAQbOY1yINPohrA2pP-h_gIPLlKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1893910581</pqid></control><display><type>article</type><title>Intrinsic electrical transport and performance projections of synthetic monolayer MoS sub(2) devices</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Smithe, Kirby K H ; English, Chris D ; Suryavanshi, Saurabh V ; Pop, Eric</creator><creatorcontrib>Smithe, Kirby K H ; English, Chris D ; Suryavanshi, Saurabh V ; Pop, Eric</creatorcontrib><description>We demonstrate monolayer (1L) MoS sub(2) grown by chemical vapor deposition (CVD) with transport properties comparable to those of the best exfoliated 1L devices over a wide range of carrier densities (up to ~10 super(13) cm super(-2)) and temperatures (80-500 K). Transfer length measurements decouple the intrinsic material mobility from the contact resistance, at practical carrier densities (&gt;10 super(12) cm super(-2)). We demonstrate the highest current density reported to date (~270 [mu]A [mu]m super(-1) or 44 MA cm super(-2)) at 300 K for an 80 nm long device from CVD-grown 1L MoS sub(2). Using simulations, we discuss what improvements of 1L MoS sub(2) are still required to meet technology roadmap requirements for low power and high performance applications. Such results are an important step towards large-area electronics based on 1L semiconductors.</description><identifier>ISSN: 2053-1583</identifier><identifier>EISSN: 2053-1583</identifier><identifier>DOI: 10.1088/2053-1583/4/1/011009</identifier><language>eng</language><subject>Carrier density ; Chemical vapor deposition ; Devices ; Electronics ; Molybdenum disulfide ; Monolayers ; Semiconductors ; Simulation</subject><ispartof>2d materials, 2017-03, Vol.4 (1), p.011009-011009</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Smithe, Kirby K H</creatorcontrib><creatorcontrib>English, Chris D</creatorcontrib><creatorcontrib>Suryavanshi, Saurabh V</creatorcontrib><creatorcontrib>Pop, Eric</creatorcontrib><title>Intrinsic electrical transport and performance projections of synthetic monolayer MoS sub(2) devices</title><title>2d materials</title><description>We demonstrate monolayer (1L) MoS sub(2) grown by chemical vapor deposition (CVD) with transport properties comparable to those of the best exfoliated 1L devices over a wide range of carrier densities (up to ~10 super(13) cm super(-2)) and temperatures (80-500 K). Transfer length measurements decouple the intrinsic material mobility from the contact resistance, at practical carrier densities (&gt;10 super(12) cm super(-2)). We demonstrate the highest current density reported to date (~270 [mu]A [mu]m super(-1) or 44 MA cm super(-2)) at 300 K for an 80 nm long device from CVD-grown 1L MoS sub(2). Using simulations, we discuss what improvements of 1L MoS sub(2) are still required to meet technology roadmap requirements for low power and high performance applications. Such results are an important step towards large-area electronics based on 1L semiconductors.</description><subject>Carrier density</subject><subject>Chemical vapor deposition</subject><subject>Devices</subject><subject>Electronics</subject><subject>Molybdenum disulfide</subject><subject>Monolayers</subject><subject>Semiconductors</subject><subject>Simulation</subject><issn>2053-1583</issn><issn>2053-1583</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqVjDFPwzAQhS0EEhX0HzDcWIaSu7opzoxAMHRq98o4F-HKsYPPQeq_JwOqujK9T0_fe0o9ED4RGlOtsNZLqo2u1hVVSITYXKnZub6-4Fs1FzkiIj1v9Jo2M9V-xJJ9FO-AA7uJnQ1Qso0ypFzAxhYGzl3KvY2OYcjpOGk-RYHUgZxi-eIyrfsUU7AnzrBNO5Dxc7F6hJZ_vGO5VzedDcLzv7xTi7fX_cv7cnr7HlnKoffiOAQbOY1yINPohrA2pP-h_gIPLlKQ</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Smithe, Kirby K H</creator><creator>English, Chris D</creator><creator>Suryavanshi, Saurabh V</creator><creator>Pop, Eric</creator><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170301</creationdate><title>Intrinsic electrical transport and performance projections of synthetic monolayer MoS sub(2) devices</title><author>Smithe, Kirby K H ; English, Chris D ; Suryavanshi, Saurabh V ; Pop, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_18939105813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carrier density</topic><topic>Chemical vapor deposition</topic><topic>Devices</topic><topic>Electronics</topic><topic>Molybdenum disulfide</topic><topic>Monolayers</topic><topic>Semiconductors</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smithe, Kirby K H</creatorcontrib><creatorcontrib>English, Chris D</creatorcontrib><creatorcontrib>Suryavanshi, Saurabh V</creatorcontrib><creatorcontrib>Pop, Eric</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>2d materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smithe, Kirby K H</au><au>English, Chris D</au><au>Suryavanshi, Saurabh V</au><au>Pop, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic electrical transport and performance projections of synthetic monolayer MoS sub(2) devices</atitle><jtitle>2d materials</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>4</volume><issue>1</issue><spage>011009</spage><epage>011009</epage><pages>011009-011009</pages><issn>2053-1583</issn><eissn>2053-1583</eissn><abstract>We demonstrate monolayer (1L) MoS sub(2) grown by chemical vapor deposition (CVD) with transport properties comparable to those of the best exfoliated 1L devices over a wide range of carrier densities (up to ~10 super(13) cm super(-2)) and temperatures (80-500 K). Transfer length measurements decouple the intrinsic material mobility from the contact resistance, at practical carrier densities (&gt;10 super(12) cm super(-2)). We demonstrate the highest current density reported to date (~270 [mu]A [mu]m super(-1) or 44 MA cm super(-2)) at 300 K for an 80 nm long device from CVD-grown 1L MoS sub(2). Using simulations, we discuss what improvements of 1L MoS sub(2) are still required to meet technology roadmap requirements for low power and high performance applications. Such results are an important step towards large-area electronics based on 1L semiconductors.</abstract><doi>10.1088/2053-1583/4/1/011009</doi></addata></record>
fulltext fulltext
identifier ISSN: 2053-1583
ispartof 2d materials, 2017-03, Vol.4 (1), p.011009-011009
issn 2053-1583
2053-1583
language eng
recordid cdi_proquest_miscellaneous_1893910581
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Carrier density
Chemical vapor deposition
Devices
Electronics
Molybdenum disulfide
Monolayers
Semiconductors
Simulation
title Intrinsic electrical transport and performance projections of synthetic monolayer MoS sub(2) devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T11%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20electrical%20transport%20and%20performance%20projections%20of%20synthetic%20monolayer%20MoS%20sub(2)%20devices&rft.jtitle=2d%20materials&rft.au=Smithe,%20Kirby%20K%20H&rft.date=2017-03-01&rft.volume=4&rft.issue=1&rft.spage=011009&rft.epage=011009&rft.pages=011009-011009&rft.issn=2053-1583&rft.eissn=2053-1583&rft_id=info:doi/10.1088/2053-1583/4/1/011009&rft_dat=%3Cproquest%3E1893910581%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_miscellaneous_18939105813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1893910581&rft_id=info:pmid/&rfr_iscdi=true