Loading…

Water vaporization promotes coseismic fluid pressurization and buffers temperature rise

We investigated the frictional properties of carbonate‐rich gouge layers at a slip rate of 1.3 m/s, under dry and water‐saturated conditions, while monitoring temperature at different locations on one of the gouge‐host rock interfaces. All experiments showed a peak frictional strength of 0.4–0.7, fo...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2017-03, Vol.44 (5), p.2177-2185
Main Authors: Chen, Jianye, Niemeijer, André, Yao, Lu, Ma, Shengli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a4898-a3d3a2f54697773ffa707393b8b9d5b2fe2bd5f7e6ee2a292652ef06454b67b93
cites cdi_FETCH-LOGICAL-a4898-a3d3a2f54697773ffa707393b8b9d5b2fe2bd5f7e6ee2a292652ef06454b67b93
container_end_page 2185
container_issue 5
container_start_page 2177
container_title Geophysical research letters
container_volume 44
creator Chen, Jianye
Niemeijer, André
Yao, Lu
Ma, Shengli
description We investigated the frictional properties of carbonate‐rich gouge layers at a slip rate of 1.3 m/s, under dry and water‐saturated conditions, while monitoring temperature at different locations on one of the gouge‐host rock interfaces. All experiments showed a peak frictional strength of 0.4–0.7, followed by strong slip weakening to steady state values of 0.1–0.3. Experiments which used a pore fluid with a constant drainage path to the atmosphere showed the development of a temperature plateau beyond 100°C, contemporaneous with the dynamic slip weakening and consistent with thermodynamic considerations of ongoing vaporization of pore water. Upon pore fluid vaporization, the pore pressure increases, while the temperature is buffered endothermically, such that the pore water moves along the liquid‐vapor transition curve in a pressure‐temperature phase diagram. Pore fluid phase transitions of this kind are expected to occur in natural earthquakes at relatively shallow crustal levels, enhancing fluid pressurization while impeding the achievement of high temperatures. Therefore, the operation of vaporization may help explain the low downhole temperature anomalies obtained shortly after large earthquakes. Key Points Water vaporization was “observed” in high‐velocity friction experiments Water vaporization promotes fluid pressurization during coseismic slip Water vaporization limits the temperature rise during coseismic slip
doi_str_mv 10.1002/2016GL071932
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893917146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1888972064</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4898-a3d3a2f54697773ffa707393b8b9d5b2fe2bd5f7e6ee2a292652ef06454b67b93</originalsourceid><addsrcrecordid>eNqN0U1LxDAQBuAgCq6rN39AwYsHq_lskqMsugoLgih7LGk7gSxtU5NW0V9vZEXEw-JpBuZhmOFF6JTgS4IxvaKYFMsVlkQzuodmRHOeK4zlPpphrFNPZXGIjmLcYIwZZmSG1mszQshezeCD-zCj8302BN_5EWJW-wgudq7ObDu5Jg0gxunHmb7JqslaCDEboRsgmHEKkAUX4RgdWNNGOPmuc_R8e_O0uMtXD8v7xfUqN1xplRvWMEOt4IWWUjJrjcSSaVapSjeiohZo1QgroQCghmpaCAoWF1zwqpCVZnN0vt2bjn6ZII5l52INbWt68FMsidJME0l48Q-qlJY0LU_07A_d-Cn06ZGS6DSnTHC1UylFFNNKsqQutqoOPsYAthyC60x4Lwkuv2Irf8eWON3yN9fC-05bLh9XQnCp2CdgbJgI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881839873</pqid></control><display><type>article</type><title>Water vaporization promotes coseismic fluid pressurization and buffers temperature rise</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Chen, Jianye ; Niemeijer, André ; Yao, Lu ; Ma, Shengli</creator><creatorcontrib>Chen, Jianye ; Niemeijer, André ; Yao, Lu ; Ma, Shengli</creatorcontrib><description>We investigated the frictional properties of carbonate‐rich gouge layers at a slip rate of 1.3 m/s, under dry and water‐saturated conditions, while monitoring temperature at different locations on one of the gouge‐host rock interfaces. All experiments showed a peak frictional strength of 0.4–0.7, followed by strong slip weakening to steady state values of 0.1–0.3. Experiments which used a pore fluid with a constant drainage path to the atmosphere showed the development of a temperature plateau beyond 100°C, contemporaneous with the dynamic slip weakening and consistent with thermodynamic considerations of ongoing vaporization of pore water. Upon pore fluid vaporization, the pore pressure increases, while the temperature is buffered endothermically, such that the pore water moves along the liquid‐vapor transition curve in a pressure‐temperature phase diagram. Pore fluid phase transitions of this kind are expected to occur in natural earthquakes at relatively shallow crustal levels, enhancing fluid pressurization while impeding the achievement of high temperatures. Therefore, the operation of vaporization may help explain the low downhole temperature anomalies obtained shortly after large earthquakes. Key Points Water vaporization was “observed” in high‐velocity friction experiments Water vaporization promotes fluid pressurization during coseismic slip Water vaporization limits the temperature rise during coseismic slip</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2016GL071932</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Anomalies ; Buffers ; Carbonates ; Earthquakes ; Endothermic reactions ; Experiments ; Fluid dynamics ; Fluids ; Geophysics ; High temperature ; high‐velocity friction ; Interfaces ; Marine ; phase transition ; Phase transitions ; Plate tectonics ; Plateaus ; Pore pressure ; Pore water ; Porosity ; Pressure ; Pressurization ; Pressurizing ; Seismic activity ; Seismology ; Slip ; slip‐weakening mechanism ; Temperature ; Temperature anomalies ; Temperature effects ; Temperature rise ; Thermodynamics ; Vaporization ; water vaporization</subject><ispartof>Geophysical research letters, 2017-03, Vol.44 (5), p.2177-2185</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4898-a3d3a2f54697773ffa707393b8b9d5b2fe2bd5f7e6ee2a292652ef06454b67b93</citedby><cites>FETCH-LOGICAL-a4898-a3d3a2f54697773ffa707393b8b9d5b2fe2bd5f7e6ee2a292652ef06454b67b93</cites><orcidid>0000-0002-5964-5458 ; 0000-0002-5973-5293 ; 0000-0003-3983-9308 ; 0000-0001-7026-0308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016GL071932$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016GL071932$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,11493,27901,27902,46443,46867</link.rule.ids></links><search><creatorcontrib>Chen, Jianye</creatorcontrib><creatorcontrib>Niemeijer, André</creatorcontrib><creatorcontrib>Yao, Lu</creatorcontrib><creatorcontrib>Ma, Shengli</creatorcontrib><title>Water vaporization promotes coseismic fluid pressurization and buffers temperature rise</title><title>Geophysical research letters</title><description>We investigated the frictional properties of carbonate‐rich gouge layers at a slip rate of 1.3 m/s, under dry and water‐saturated conditions, while monitoring temperature at different locations on one of the gouge‐host rock interfaces. All experiments showed a peak frictional strength of 0.4–0.7, followed by strong slip weakening to steady state values of 0.1–0.3. Experiments which used a pore fluid with a constant drainage path to the atmosphere showed the development of a temperature plateau beyond 100°C, contemporaneous with the dynamic slip weakening and consistent with thermodynamic considerations of ongoing vaporization of pore water. Upon pore fluid vaporization, the pore pressure increases, while the temperature is buffered endothermically, such that the pore water moves along the liquid‐vapor transition curve in a pressure‐temperature phase diagram. Pore fluid phase transitions of this kind are expected to occur in natural earthquakes at relatively shallow crustal levels, enhancing fluid pressurization while impeding the achievement of high temperatures. Therefore, the operation of vaporization may help explain the low downhole temperature anomalies obtained shortly after large earthquakes. Key Points Water vaporization was “observed” in high‐velocity friction experiments Water vaporization promotes fluid pressurization during coseismic slip Water vaporization limits the temperature rise during coseismic slip</description><subject>Anomalies</subject><subject>Buffers</subject><subject>Carbonates</subject><subject>Earthquakes</subject><subject>Endothermic reactions</subject><subject>Experiments</subject><subject>Fluid dynamics</subject><subject>Fluids</subject><subject>Geophysics</subject><subject>High temperature</subject><subject>high‐velocity friction</subject><subject>Interfaces</subject><subject>Marine</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>Plate tectonics</subject><subject>Plateaus</subject><subject>Pore pressure</subject><subject>Pore water</subject><subject>Porosity</subject><subject>Pressure</subject><subject>Pressurization</subject><subject>Pressurizing</subject><subject>Seismic activity</subject><subject>Seismology</subject><subject>Slip</subject><subject>slip‐weakening mechanism</subject><subject>Temperature</subject><subject>Temperature anomalies</subject><subject>Temperature effects</subject><subject>Temperature rise</subject><subject>Thermodynamics</subject><subject>Vaporization</subject><subject>water vaporization</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqN0U1LxDAQBuAgCq6rN39AwYsHq_lskqMsugoLgih7LGk7gSxtU5NW0V9vZEXEw-JpBuZhmOFF6JTgS4IxvaKYFMsVlkQzuodmRHOeK4zlPpphrFNPZXGIjmLcYIwZZmSG1mszQshezeCD-zCj8302BN_5EWJW-wgudq7ObDu5Jg0gxunHmb7JqslaCDEboRsgmHEKkAUX4RgdWNNGOPmuc_R8e_O0uMtXD8v7xfUqN1xplRvWMEOt4IWWUjJrjcSSaVapSjeiohZo1QgroQCghmpaCAoWF1zwqpCVZnN0vt2bjn6ZII5l52INbWt68FMsidJME0l48Q-qlJY0LU_07A_d-Cn06ZGS6DSnTHC1UylFFNNKsqQutqoOPsYAthyC60x4Lwkuv2Irf8eWON3yN9fC-05bLh9XQnCp2CdgbJgI</recordid><startdate>20170316</startdate><enddate>20170316</enddate><creator>Chen, Jianye</creator><creator>Niemeijer, André</creator><creator>Yao, Lu</creator><creator>Ma, Shengli</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5964-5458</orcidid><orcidid>https://orcid.org/0000-0002-5973-5293</orcidid><orcidid>https://orcid.org/0000-0003-3983-9308</orcidid><orcidid>https://orcid.org/0000-0001-7026-0308</orcidid></search><sort><creationdate>20170316</creationdate><title>Water vaporization promotes coseismic fluid pressurization and buffers temperature rise</title><author>Chen, Jianye ; Niemeijer, André ; Yao, Lu ; Ma, Shengli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4898-a3d3a2f54697773ffa707393b8b9d5b2fe2bd5f7e6ee2a292652ef06454b67b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anomalies</topic><topic>Buffers</topic><topic>Carbonates</topic><topic>Earthquakes</topic><topic>Endothermic reactions</topic><topic>Experiments</topic><topic>Fluid dynamics</topic><topic>Fluids</topic><topic>Geophysics</topic><topic>High temperature</topic><topic>high‐velocity friction</topic><topic>Interfaces</topic><topic>Marine</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>Plate tectonics</topic><topic>Plateaus</topic><topic>Pore pressure</topic><topic>Pore water</topic><topic>Porosity</topic><topic>Pressure</topic><topic>Pressurization</topic><topic>Pressurizing</topic><topic>Seismic activity</topic><topic>Seismology</topic><topic>Slip</topic><topic>slip‐weakening mechanism</topic><topic>Temperature</topic><topic>Temperature anomalies</topic><topic>Temperature effects</topic><topic>Temperature rise</topic><topic>Thermodynamics</topic><topic>Vaporization</topic><topic>water vaporization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jianye</creatorcontrib><creatorcontrib>Niemeijer, André</creatorcontrib><creatorcontrib>Yao, Lu</creatorcontrib><creatorcontrib>Ma, Shengli</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jianye</au><au>Niemeijer, André</au><au>Yao, Lu</au><au>Ma, Shengli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water vaporization promotes coseismic fluid pressurization and buffers temperature rise</atitle><jtitle>Geophysical research letters</jtitle><date>2017-03-16</date><risdate>2017</risdate><volume>44</volume><issue>5</issue><spage>2177</spage><epage>2185</epage><pages>2177-2185</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>We investigated the frictional properties of carbonate‐rich gouge layers at a slip rate of 1.3 m/s, under dry and water‐saturated conditions, while monitoring temperature at different locations on one of the gouge‐host rock interfaces. All experiments showed a peak frictional strength of 0.4–0.7, followed by strong slip weakening to steady state values of 0.1–0.3. Experiments which used a pore fluid with a constant drainage path to the atmosphere showed the development of a temperature plateau beyond 100°C, contemporaneous with the dynamic slip weakening and consistent with thermodynamic considerations of ongoing vaporization of pore water. Upon pore fluid vaporization, the pore pressure increases, while the temperature is buffered endothermically, such that the pore water moves along the liquid‐vapor transition curve in a pressure‐temperature phase diagram. Pore fluid phase transitions of this kind are expected to occur in natural earthquakes at relatively shallow crustal levels, enhancing fluid pressurization while impeding the achievement of high temperatures. Therefore, the operation of vaporization may help explain the low downhole temperature anomalies obtained shortly after large earthquakes. Key Points Water vaporization was “observed” in high‐velocity friction experiments Water vaporization promotes fluid pressurization during coseismic slip Water vaporization limits the temperature rise during coseismic slip</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2016GL071932</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5964-5458</orcidid><orcidid>https://orcid.org/0000-0002-5973-5293</orcidid><orcidid>https://orcid.org/0000-0003-3983-9308</orcidid><orcidid>https://orcid.org/0000-0001-7026-0308</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2017-03, Vol.44 (5), p.2177-2185
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1893917146
source Wiley-Blackwell AGU Digital Archive
subjects Anomalies
Buffers
Carbonates
Earthquakes
Endothermic reactions
Experiments
Fluid dynamics
Fluids
Geophysics
High temperature
high‐velocity friction
Interfaces
Marine
phase transition
Phase transitions
Plate tectonics
Plateaus
Pore pressure
Pore water
Porosity
Pressure
Pressurization
Pressurizing
Seismic activity
Seismology
Slip
slip‐weakening mechanism
Temperature
Temperature anomalies
Temperature effects
Temperature rise
Thermodynamics
Vaporization
water vaporization
title Water vaporization promotes coseismic fluid pressurization and buffers temperature rise
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A38%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20vaporization%20promotes%20coseismic%20fluid%20pressurization%20and%20buffers%20temperature%20rise&rft.jtitle=Geophysical%20research%20letters&rft.au=Chen,%20Jianye&rft.date=2017-03-16&rft.volume=44&rft.issue=5&rft.spage=2177&rft.epage=2185&rft.pages=2177-2185&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2016GL071932&rft_dat=%3Cproquest_cross%3E1888972064%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4898-a3d3a2f54697773ffa707393b8b9d5b2fe2bd5f7e6ee2a292652ef06454b67b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1881839873&rft_id=info:pmid/&rfr_iscdi=true