Loading…
Water vaporization promotes coseismic fluid pressurization and buffers temperature rise
We investigated the frictional properties of carbonate‐rich gouge layers at a slip rate of 1.3 m/s, under dry and water‐saturated conditions, while monitoring temperature at different locations on one of the gouge‐host rock interfaces. All experiments showed a peak frictional strength of 0.4–0.7, fo...
Saved in:
Published in: | Geophysical research letters 2017-03, Vol.44 (5), p.2177-2185 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a4898-a3d3a2f54697773ffa707393b8b9d5b2fe2bd5f7e6ee2a292652ef06454b67b93 |
---|---|
cites | cdi_FETCH-LOGICAL-a4898-a3d3a2f54697773ffa707393b8b9d5b2fe2bd5f7e6ee2a292652ef06454b67b93 |
container_end_page | 2185 |
container_issue | 5 |
container_start_page | 2177 |
container_title | Geophysical research letters |
container_volume | 44 |
creator | Chen, Jianye Niemeijer, André Yao, Lu Ma, Shengli |
description | We investigated the frictional properties of carbonate‐rich gouge layers at a slip rate of 1.3 m/s, under dry and water‐saturated conditions, while monitoring temperature at different locations on one of the gouge‐host rock interfaces. All experiments showed a peak frictional strength of 0.4–0.7, followed by strong slip weakening to steady state values of 0.1–0.3. Experiments which used a pore fluid with a constant drainage path to the atmosphere showed the development of a temperature plateau beyond 100°C, contemporaneous with the dynamic slip weakening and consistent with thermodynamic considerations of ongoing vaporization of pore water. Upon pore fluid vaporization, the pore pressure increases, while the temperature is buffered endothermically, such that the pore water moves along the liquid‐vapor transition curve in a pressure‐temperature phase diagram. Pore fluid phase transitions of this kind are expected to occur in natural earthquakes at relatively shallow crustal levels, enhancing fluid pressurization while impeding the achievement of high temperatures. Therefore, the operation of vaporization may help explain the low downhole temperature anomalies obtained shortly after large earthquakes.
Key Points
Water vaporization was “observed” in high‐velocity friction experiments
Water vaporization promotes fluid pressurization during coseismic slip
Water vaporization limits the temperature rise during coseismic slip |
doi_str_mv | 10.1002/2016GL071932 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893917146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1888972064</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4898-a3d3a2f54697773ffa707393b8b9d5b2fe2bd5f7e6ee2a292652ef06454b67b93</originalsourceid><addsrcrecordid>eNqN0U1LxDAQBuAgCq6rN39AwYsHq_lskqMsugoLgih7LGk7gSxtU5NW0V9vZEXEw-JpBuZhmOFF6JTgS4IxvaKYFMsVlkQzuodmRHOeK4zlPpphrFNPZXGIjmLcYIwZZmSG1mszQshezeCD-zCj8302BN_5EWJW-wgudq7ObDu5Jg0gxunHmb7JqslaCDEboRsgmHEKkAUX4RgdWNNGOPmuc_R8e_O0uMtXD8v7xfUqN1xplRvWMEOt4IWWUjJrjcSSaVapSjeiohZo1QgroQCghmpaCAoWF1zwqpCVZnN0vt2bjn6ZII5l52INbWt68FMsidJME0l48Q-qlJY0LU_07A_d-Cn06ZGS6DSnTHC1UylFFNNKsqQutqoOPsYAthyC60x4Lwkuv2Irf8eWON3yN9fC-05bLh9XQnCp2CdgbJgI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881839873</pqid></control><display><type>article</type><title>Water vaporization promotes coseismic fluid pressurization and buffers temperature rise</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Chen, Jianye ; Niemeijer, André ; Yao, Lu ; Ma, Shengli</creator><creatorcontrib>Chen, Jianye ; Niemeijer, André ; Yao, Lu ; Ma, Shengli</creatorcontrib><description>We investigated the frictional properties of carbonate‐rich gouge layers at a slip rate of 1.3 m/s, under dry and water‐saturated conditions, while monitoring temperature at different locations on one of the gouge‐host rock interfaces. All experiments showed a peak frictional strength of 0.4–0.7, followed by strong slip weakening to steady state values of 0.1–0.3. Experiments which used a pore fluid with a constant drainage path to the atmosphere showed the development of a temperature plateau beyond 100°C, contemporaneous with the dynamic slip weakening and consistent with thermodynamic considerations of ongoing vaporization of pore water. Upon pore fluid vaporization, the pore pressure increases, while the temperature is buffered endothermically, such that the pore water moves along the liquid‐vapor transition curve in a pressure‐temperature phase diagram. Pore fluid phase transitions of this kind are expected to occur in natural earthquakes at relatively shallow crustal levels, enhancing fluid pressurization while impeding the achievement of high temperatures. Therefore, the operation of vaporization may help explain the low downhole temperature anomalies obtained shortly after large earthquakes.
Key Points
Water vaporization was “observed” in high‐velocity friction experiments
Water vaporization promotes fluid pressurization during coseismic slip
Water vaporization limits the temperature rise during coseismic slip</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2016GL071932</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Anomalies ; Buffers ; Carbonates ; Earthquakes ; Endothermic reactions ; Experiments ; Fluid dynamics ; Fluids ; Geophysics ; High temperature ; high‐velocity friction ; Interfaces ; Marine ; phase transition ; Phase transitions ; Plate tectonics ; Plateaus ; Pore pressure ; Pore water ; Porosity ; Pressure ; Pressurization ; Pressurizing ; Seismic activity ; Seismology ; Slip ; slip‐weakening mechanism ; Temperature ; Temperature anomalies ; Temperature effects ; Temperature rise ; Thermodynamics ; Vaporization ; water vaporization</subject><ispartof>Geophysical research letters, 2017-03, Vol.44 (5), p.2177-2185</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4898-a3d3a2f54697773ffa707393b8b9d5b2fe2bd5f7e6ee2a292652ef06454b67b93</citedby><cites>FETCH-LOGICAL-a4898-a3d3a2f54697773ffa707393b8b9d5b2fe2bd5f7e6ee2a292652ef06454b67b93</cites><orcidid>0000-0002-5964-5458 ; 0000-0002-5973-5293 ; 0000-0003-3983-9308 ; 0000-0001-7026-0308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016GL071932$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016GL071932$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,11493,27901,27902,46443,46867</link.rule.ids></links><search><creatorcontrib>Chen, Jianye</creatorcontrib><creatorcontrib>Niemeijer, André</creatorcontrib><creatorcontrib>Yao, Lu</creatorcontrib><creatorcontrib>Ma, Shengli</creatorcontrib><title>Water vaporization promotes coseismic fluid pressurization and buffers temperature rise</title><title>Geophysical research letters</title><description>We investigated the frictional properties of carbonate‐rich gouge layers at a slip rate of 1.3 m/s, under dry and water‐saturated conditions, while monitoring temperature at different locations on one of the gouge‐host rock interfaces. All experiments showed a peak frictional strength of 0.4–0.7, followed by strong slip weakening to steady state values of 0.1–0.3. Experiments which used a pore fluid with a constant drainage path to the atmosphere showed the development of a temperature plateau beyond 100°C, contemporaneous with the dynamic slip weakening and consistent with thermodynamic considerations of ongoing vaporization of pore water. Upon pore fluid vaporization, the pore pressure increases, while the temperature is buffered endothermically, such that the pore water moves along the liquid‐vapor transition curve in a pressure‐temperature phase diagram. Pore fluid phase transitions of this kind are expected to occur in natural earthquakes at relatively shallow crustal levels, enhancing fluid pressurization while impeding the achievement of high temperatures. Therefore, the operation of vaporization may help explain the low downhole temperature anomalies obtained shortly after large earthquakes.
Key Points
Water vaporization was “observed” in high‐velocity friction experiments
Water vaporization promotes fluid pressurization during coseismic slip
Water vaporization limits the temperature rise during coseismic slip</description><subject>Anomalies</subject><subject>Buffers</subject><subject>Carbonates</subject><subject>Earthquakes</subject><subject>Endothermic reactions</subject><subject>Experiments</subject><subject>Fluid dynamics</subject><subject>Fluids</subject><subject>Geophysics</subject><subject>High temperature</subject><subject>high‐velocity friction</subject><subject>Interfaces</subject><subject>Marine</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>Plate tectonics</subject><subject>Plateaus</subject><subject>Pore pressure</subject><subject>Pore water</subject><subject>Porosity</subject><subject>Pressure</subject><subject>Pressurization</subject><subject>Pressurizing</subject><subject>Seismic activity</subject><subject>Seismology</subject><subject>Slip</subject><subject>slip‐weakening mechanism</subject><subject>Temperature</subject><subject>Temperature anomalies</subject><subject>Temperature effects</subject><subject>Temperature rise</subject><subject>Thermodynamics</subject><subject>Vaporization</subject><subject>water vaporization</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqN0U1LxDAQBuAgCq6rN39AwYsHq_lskqMsugoLgih7LGk7gSxtU5NW0V9vZEXEw-JpBuZhmOFF6JTgS4IxvaKYFMsVlkQzuodmRHOeK4zlPpphrFNPZXGIjmLcYIwZZmSG1mszQshezeCD-zCj8302BN_5EWJW-wgudq7ObDu5Jg0gxunHmb7JqslaCDEboRsgmHEKkAUX4RgdWNNGOPmuc_R8e_O0uMtXD8v7xfUqN1xplRvWMEOt4IWWUjJrjcSSaVapSjeiohZo1QgroQCghmpaCAoWF1zwqpCVZnN0vt2bjn6ZII5l52INbWt68FMsidJME0l48Q-qlJY0LU_07A_d-Cn06ZGS6DSnTHC1UylFFNNKsqQutqoOPsYAthyC60x4Lwkuv2Irf8eWON3yN9fC-05bLh9XQnCp2CdgbJgI</recordid><startdate>20170316</startdate><enddate>20170316</enddate><creator>Chen, Jianye</creator><creator>Niemeijer, André</creator><creator>Yao, Lu</creator><creator>Ma, Shengli</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5964-5458</orcidid><orcidid>https://orcid.org/0000-0002-5973-5293</orcidid><orcidid>https://orcid.org/0000-0003-3983-9308</orcidid><orcidid>https://orcid.org/0000-0001-7026-0308</orcidid></search><sort><creationdate>20170316</creationdate><title>Water vaporization promotes coseismic fluid pressurization and buffers temperature rise</title><author>Chen, Jianye ; Niemeijer, André ; Yao, Lu ; Ma, Shengli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4898-a3d3a2f54697773ffa707393b8b9d5b2fe2bd5f7e6ee2a292652ef06454b67b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anomalies</topic><topic>Buffers</topic><topic>Carbonates</topic><topic>Earthquakes</topic><topic>Endothermic reactions</topic><topic>Experiments</topic><topic>Fluid dynamics</topic><topic>Fluids</topic><topic>Geophysics</topic><topic>High temperature</topic><topic>high‐velocity friction</topic><topic>Interfaces</topic><topic>Marine</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>Plate tectonics</topic><topic>Plateaus</topic><topic>Pore pressure</topic><topic>Pore water</topic><topic>Porosity</topic><topic>Pressure</topic><topic>Pressurization</topic><topic>Pressurizing</topic><topic>Seismic activity</topic><topic>Seismology</topic><topic>Slip</topic><topic>slip‐weakening mechanism</topic><topic>Temperature</topic><topic>Temperature anomalies</topic><topic>Temperature effects</topic><topic>Temperature rise</topic><topic>Thermodynamics</topic><topic>Vaporization</topic><topic>water vaporization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jianye</creatorcontrib><creatorcontrib>Niemeijer, André</creatorcontrib><creatorcontrib>Yao, Lu</creatorcontrib><creatorcontrib>Ma, Shengli</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jianye</au><au>Niemeijer, André</au><au>Yao, Lu</au><au>Ma, Shengli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water vaporization promotes coseismic fluid pressurization and buffers temperature rise</atitle><jtitle>Geophysical research letters</jtitle><date>2017-03-16</date><risdate>2017</risdate><volume>44</volume><issue>5</issue><spage>2177</spage><epage>2185</epage><pages>2177-2185</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>We investigated the frictional properties of carbonate‐rich gouge layers at a slip rate of 1.3 m/s, under dry and water‐saturated conditions, while monitoring temperature at different locations on one of the gouge‐host rock interfaces. All experiments showed a peak frictional strength of 0.4–0.7, followed by strong slip weakening to steady state values of 0.1–0.3. Experiments which used a pore fluid with a constant drainage path to the atmosphere showed the development of a temperature plateau beyond 100°C, contemporaneous with the dynamic slip weakening and consistent with thermodynamic considerations of ongoing vaporization of pore water. Upon pore fluid vaporization, the pore pressure increases, while the temperature is buffered endothermically, such that the pore water moves along the liquid‐vapor transition curve in a pressure‐temperature phase diagram. Pore fluid phase transitions of this kind are expected to occur in natural earthquakes at relatively shallow crustal levels, enhancing fluid pressurization while impeding the achievement of high temperatures. Therefore, the operation of vaporization may help explain the low downhole temperature anomalies obtained shortly after large earthquakes.
Key Points
Water vaporization was “observed” in high‐velocity friction experiments
Water vaporization promotes fluid pressurization during coseismic slip
Water vaporization limits the temperature rise during coseismic slip</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/2016GL071932</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5964-5458</orcidid><orcidid>https://orcid.org/0000-0002-5973-5293</orcidid><orcidid>https://orcid.org/0000-0003-3983-9308</orcidid><orcidid>https://orcid.org/0000-0001-7026-0308</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2017-03, Vol.44 (5), p.2177-2185 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_1893917146 |
source | Wiley-Blackwell AGU Digital Archive |
subjects | Anomalies Buffers Carbonates Earthquakes Endothermic reactions Experiments Fluid dynamics Fluids Geophysics High temperature high‐velocity friction Interfaces Marine phase transition Phase transitions Plate tectonics Plateaus Pore pressure Pore water Porosity Pressure Pressurization Pressurizing Seismic activity Seismology Slip slip‐weakening mechanism Temperature Temperature anomalies Temperature effects Temperature rise Thermodynamics Vaporization water vaporization |
title | Water vaporization promotes coseismic fluid pressurization and buffers temperature rise |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A38%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20vaporization%20promotes%20coseismic%20fluid%20pressurization%20and%20buffers%20temperature%20rise&rft.jtitle=Geophysical%20research%20letters&rft.au=Chen,%20Jianye&rft.date=2017-03-16&rft.volume=44&rft.issue=5&rft.spage=2177&rft.epage=2185&rft.pages=2177-2185&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2016GL071932&rft_dat=%3Cproquest_cross%3E1888972064%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4898-a3d3a2f54697773ffa707393b8b9d5b2fe2bd5f7e6ee2a292652ef06454b67b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1881839873&rft_id=info:pmid/&rfr_iscdi=true |