Loading…
Effect of elemental composition on phase formation during milling of multicomponent equiatomic mixtures
Using mechanochemical synthesis through milling of equiatomic multicomponent mixtures of Cr, Fe, Co, Ni, Al, Ti, Mo, and Nb metals in various combinations, we have synthesized powder alloys with different phase compositions: amorphous phase (AP), AP + BCC phase, AP + BCC phase + MO, and FCC + BCC ph...
Saved in:
Published in: | Inorganic materials 2016-05, Vol.52 (5), p.529-536 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using mechanochemical synthesis through milling of equiatomic multicomponent mixtures of Cr, Fe, Co, Ni, Al, Ti, Mo, and Nb metals in various combinations, we have synthesized powder alloys with different phase compositions: amorphous phase (AP), AP + BCC phase, AP + BCC phase + MO, and FCC + BCC phases. The FCC phase has been shown to be a Ni-based solid solution. The presence of aluminum in a starting mixture helps to stabilize the BCC phase owing to the formation of a disordered
B2
phase. Al dissolves in both the BCC and FCC solid solutions, increasing their lattice parameters. In Al-free starting mixtures, Cr is responsible for the formation of the BCC solid solution. The formation of an AP during milling of multicomponent mixtures is favored by the presence of transition metals with a large atomic radius: Ti, Mo, and Nb. |
---|---|
ISSN: | 0020-1685 1608-3172 |
DOI: | 10.1134/S0020168516050125 |