Loading…
Estimation of the time delay of coupling between oscillators from time realizations of oscillation phases for different properties of phase dynamics
The problem of interval estimation of the time delay of the coupling between oscillatory systems from observed time series is considered. It is shown that the known asymptotic estimates based on the empirical model in the form of a system of first-order phase oscillators and the maximum likelihood f...
Saved in:
Published in: | Journal of communications technology & electronics 2017-03, Vol.62 (3), p.241-250 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c459t-4dc4ee71165db150098604169a19c21aa78e3f0818dfe36c428c973103ca2aa83 |
---|---|
cites | cdi_FETCH-LOGICAL-c459t-4dc4ee71165db150098604169a19c21aa78e3f0818dfe36c428c973103ca2aa83 |
container_end_page | 250 |
container_issue | 3 |
container_start_page | 241 |
container_title | Journal of communications technology & electronics |
container_volume | 62 |
creator | Sidak, E. V. Smirnov, D. A. Bezruchko, B. P. |
description | The problem of interval estimation of the time delay of the coupling between oscillatory systems from observed time series is considered. It is shown that the known asymptotic estimates based on the empirical model in the form of a system of first-order phase oscillators and the maximum likelihood formalism can lead to false inferences of the value of the time delay in two typical situations: 1) nonlinear low-dimensional systems whose phases are well-determined but, as a result of significant amplitude fluctuations, the phase approximation is insufficient for describing the dynamics and 2) systems whose phases are defined not quite well because of too large amplitude fluctuations. A method for empirical diagnostics of problematic situations and its modification (coarse estimation) providing a low probability of false inferences in these situation are proposed. The efficiency of the diagnostic criterion and coarse estimation suggested is demonstrated on reference systems with different dynamic properties (linear stochastic oscillators, van der Pol oscillators, and Ressler and Lorenz chaotic systems). |
doi_str_mv | 10.1134/S1064226917030196 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893917288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A497909388</galeid><sourcerecordid>A497909388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-4dc4ee71165db150098604169a19c21aa78e3f0818dfe36c428c973103ca2aa83</originalsourceid><addsrcrecordid>eNp10t9r1TAUB_AiCs7pH-BbwRcFO3Oa_kgex5g6GAhOn0tuetKb0ZvUnJR5_Tv2By-9VdhVpNCmyed7OGmTZa-BnQHw6sMNsKYqy0ZCyzgD2TzJTqCu66Kp6_ZpGqflYll_nr0gumWMy4bxk-z-kqLdqWi9y73J4xbz9I55j6PaLzPaz9No3ZBvMN4hJkXajqOKPlBugt-tPqAa7a9DHVpif9RSd9oqwoR9yHtrDAZ0MZ-CnzBEiwd-IHm_d2pnNb3Mnhk1Er76_TzNvn-8_Hbxubj-8unq4vy60FUtY1H1ukJsAZq630DNmBQNq6CRCqQuQalWIDdMgOgN8kZXpdCy5cC4VqVSgp9mb9e6qZkfM1LsdpY0pr4d-pk6EJKnD1qKhb75i976ObjUXVICKsYFg6TOVjWoETvrjI9B6XT1mPblHRqb5s8r2Uom-aHsu6NAMhF_xkHNRN3Vzddj-_6R3cxkHVK6kR22kdbIEYeV6-CJAppuCulPh30HrFvOTPfPmUmZcs1Qsm7A8GiX_w09ANm9w-s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881403801</pqid></control><display><type>article</type><title>Estimation of the time delay of coupling between oscillators from time realizations of oscillation phases for different properties of phase dynamics</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Sidak, E. V. ; Smirnov, D. A. ; Bezruchko, B. P.</creator><creatorcontrib>Sidak, E. V. ; Smirnov, D. A. ; Bezruchko, B. P.</creatorcontrib><description>The problem of interval estimation of the time delay of the coupling between oscillatory systems from observed time series is considered. It is shown that the known asymptotic estimates based on the empirical model in the form of a system of first-order phase oscillators and the maximum likelihood formalism can lead to false inferences of the value of the time delay in two typical situations: 1) nonlinear low-dimensional systems whose phases are well-determined but, as a result of significant amplitude fluctuations, the phase approximation is insufficient for describing the dynamics and 2) systems whose phases are defined not quite well because of too large amplitude fluctuations. A method for empirical diagnostics of problematic situations and its modification (coarse estimation) providing a low probability of false inferences in these situation are proposed. The efficiency of the diagnostic criterion and coarse estimation suggested is demonstrated on reference systems with different dynamic properties (linear stochastic oscillators, van der Pol oscillators, and Ressler and Lorenz chaotic systems).</description><identifier>ISSN: 1064-2269</identifier><identifier>EISSN: 1555-6557</identifier><identifier>DOI: 10.1134/S1064226917030196</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Amplitudes ; Approximation ; Communications Engineering ; Communications technology ; Connectors ; Diagnostic systems ; Diagnostics ; Dynamical systems ; Dynamics ; Dynamics Chaos in Radiophysics and Electronics ; Engineering ; Estimates ; Estimating techniques ; Networks ; Noise ; Nonlinear dynamics ; Oscillators ; Phases ; Studies ; Time ; Time delay ; Time series</subject><ispartof>Journal of communications technology & electronics, 2017-03, Vol.62 (3), p.241-250</ispartof><rights>Pleiades Publishing, Inc. 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Journal of Communications Technology and Electronics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-4dc4ee71165db150098604169a19c21aa78e3f0818dfe36c428c973103ca2aa83</citedby><cites>FETCH-LOGICAL-c459t-4dc4ee71165db150098604169a19c21aa78e3f0818dfe36c428c973103ca2aa83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1881403801?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363</link.rule.ids></links><search><creatorcontrib>Sidak, E. V.</creatorcontrib><creatorcontrib>Smirnov, D. A.</creatorcontrib><creatorcontrib>Bezruchko, B. P.</creatorcontrib><title>Estimation of the time delay of coupling between oscillators from time realizations of oscillation phases for different properties of phase dynamics</title><title>Journal of communications technology & electronics</title><addtitle>J. Commun. Technol. Electron</addtitle><description>The problem of interval estimation of the time delay of the coupling between oscillatory systems from observed time series is considered. It is shown that the known asymptotic estimates based on the empirical model in the form of a system of first-order phase oscillators and the maximum likelihood formalism can lead to false inferences of the value of the time delay in two typical situations: 1) nonlinear low-dimensional systems whose phases are well-determined but, as a result of significant amplitude fluctuations, the phase approximation is insufficient for describing the dynamics and 2) systems whose phases are defined not quite well because of too large amplitude fluctuations. A method for empirical diagnostics of problematic situations and its modification (coarse estimation) providing a low probability of false inferences in these situation are proposed. The efficiency of the diagnostic criterion and coarse estimation suggested is demonstrated on reference systems with different dynamic properties (linear stochastic oscillators, van der Pol oscillators, and Ressler and Lorenz chaotic systems).</description><subject>Amplitudes</subject><subject>Approximation</subject><subject>Communications Engineering</subject><subject>Communications technology</subject><subject>Connectors</subject><subject>Diagnostic systems</subject><subject>Diagnostics</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Dynamics Chaos in Radiophysics and Electronics</subject><subject>Engineering</subject><subject>Estimates</subject><subject>Estimating techniques</subject><subject>Networks</subject><subject>Noise</subject><subject>Nonlinear dynamics</subject><subject>Oscillators</subject><subject>Phases</subject><subject>Studies</subject><subject>Time</subject><subject>Time delay</subject><subject>Time series</subject><issn>1064-2269</issn><issn>1555-6557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp10t9r1TAUB_AiCs7pH-BbwRcFO3Oa_kgex5g6GAhOn0tuetKb0ZvUnJR5_Tv2By-9VdhVpNCmyed7OGmTZa-BnQHw6sMNsKYqy0ZCyzgD2TzJTqCu66Kp6_ZpGqflYll_nr0gumWMy4bxk-z-kqLdqWi9y73J4xbz9I55j6PaLzPaz9No3ZBvMN4hJkXajqOKPlBugt-tPqAa7a9DHVpif9RSd9oqwoR9yHtrDAZ0MZ-CnzBEiwd-IHm_d2pnNb3Mnhk1Er76_TzNvn-8_Hbxubj-8unq4vy60FUtY1H1ukJsAZq630DNmBQNq6CRCqQuQalWIDdMgOgN8kZXpdCy5cC4VqVSgp9mb9e6qZkfM1LsdpY0pr4d-pk6EJKnD1qKhb75i976ObjUXVICKsYFg6TOVjWoETvrjI9B6XT1mPblHRqb5s8r2Uom-aHsu6NAMhF_xkHNRN3Vzddj-_6R3cxkHVK6kR22kdbIEYeV6-CJAppuCulPh30HrFvOTPfPmUmZcs1Qsm7A8GiX_w09ANm9w-s</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Sidak, E. V.</creator><creator>Smirnov, D. A.</creator><creator>Bezruchko, B. P.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>3V.</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>88K</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>M0C</scope><scope>M2P</scope><scope>M2T</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20170301</creationdate><title>Estimation of the time delay of coupling between oscillators from time realizations of oscillation phases for different properties of phase dynamics</title><author>Sidak, E. V. ; Smirnov, D. A. ; Bezruchko, B. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-4dc4ee71165db150098604169a19c21aa78e3f0818dfe36c428c973103ca2aa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amplitudes</topic><topic>Approximation</topic><topic>Communications Engineering</topic><topic>Communications technology</topic><topic>Connectors</topic><topic>Diagnostic systems</topic><topic>Diagnostics</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Dynamics Chaos in Radiophysics and Electronics</topic><topic>Engineering</topic><topic>Estimates</topic><topic>Estimating techniques</topic><topic>Networks</topic><topic>Noise</topic><topic>Nonlinear dynamics</topic><topic>Oscillators</topic><topic>Phases</topic><topic>Studies</topic><topic>Time</topic><topic>Time delay</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sidak, E. V.</creatorcontrib><creatorcontrib>Smirnov, D. A.</creatorcontrib><creatorcontrib>Bezruchko, B. P.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights (formerly Business Insights: Global)</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of communications technology & electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sidak, E. V.</au><au>Smirnov, D. A.</au><au>Bezruchko, B. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of the time delay of coupling between oscillators from time realizations of oscillation phases for different properties of phase dynamics</atitle><jtitle>Journal of communications technology & electronics</jtitle><stitle>J. Commun. Technol. Electron</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>62</volume><issue>3</issue><spage>241</spage><epage>250</epage><pages>241-250</pages><issn>1064-2269</issn><eissn>1555-6557</eissn><abstract>The problem of interval estimation of the time delay of the coupling between oscillatory systems from observed time series is considered. It is shown that the known asymptotic estimates based on the empirical model in the form of a system of first-order phase oscillators and the maximum likelihood formalism can lead to false inferences of the value of the time delay in two typical situations: 1) nonlinear low-dimensional systems whose phases are well-determined but, as a result of significant amplitude fluctuations, the phase approximation is insufficient for describing the dynamics and 2) systems whose phases are defined not quite well because of too large amplitude fluctuations. A method for empirical diagnostics of problematic situations and its modification (coarse estimation) providing a low probability of false inferences in these situation are proposed. The efficiency of the diagnostic criterion and coarse estimation suggested is demonstrated on reference systems with different dynamic properties (linear stochastic oscillators, van der Pol oscillators, and Ressler and Lorenz chaotic systems).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064226917030196</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-2269 |
ispartof | Journal of communications technology & electronics, 2017-03, Vol.62 (3), p.241-250 |
issn | 1064-2269 1555-6557 |
language | eng |
recordid | cdi_proquest_miscellaneous_1893917288 |
source | ABI/INFORM Global; Springer Link |
subjects | Amplitudes Approximation Communications Engineering Communications technology Connectors Diagnostic systems Diagnostics Dynamical systems Dynamics Dynamics Chaos in Radiophysics and Electronics Engineering Estimates Estimating techniques Networks Noise Nonlinear dynamics Oscillators Phases Studies Time Time delay Time series |
title | Estimation of the time delay of coupling between oscillators from time realizations of oscillation phases for different properties of phase dynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20the%20time%20delay%20of%20coupling%20between%20oscillators%20from%20time%20realizations%20of%20oscillation%20phases%20for%20different%20properties%20of%20phase%20dynamics&rft.jtitle=Journal%20of%20communications%20technology%20&%20electronics&rft.au=Sidak,%20E.%20V.&rft.date=2017-03-01&rft.volume=62&rft.issue=3&rft.spage=241&rft.epage=250&rft.pages=241-250&rft.issn=1064-2269&rft.eissn=1555-6557&rft_id=info:doi/10.1134/S1064226917030196&rft_dat=%3Cgale_proqu%3EA497909388%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-4dc4ee71165db150098604169a19c21aa78e3f0818dfe36c428c973103ca2aa83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1881403801&rft_id=info:pmid/&rft_galeid=A497909388&rfr_iscdi=true |