Loading…

Characterizing batch reactions with in situ spectroscopic measurements, calorimetry and dynamic modeling

A method for fully characterizing consecutive batch reactions using self‐modeling curve resolution of in situ spectroscopic measurements and reaction energy profiles is reported. Simultaneous measurement of reaction temperature, reactor jacket temperature, reactor heater power and UV/visible spectra...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemometrics 2003-08, Vol.17 (8-9), p.470-479
Main Authors: Ma, Bei, Gemperline, Paul J., Cash, Eric, Bosserman, Mary, Comas, Enric
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3913-1d396e6deb60f938c1d34a27030baa5f0ee116f28d869f789f908d4b18d0d3953
cites cdi_FETCH-LOGICAL-c3913-1d396e6deb60f938c1d34a27030baa5f0ee116f28d869f789f908d4b18d0d3953
container_end_page 479
container_issue 8-9
container_start_page 470
container_title Journal of chemometrics
container_volume 17
creator Ma, Bei
Gemperline, Paul J.
Cash, Eric
Bosserman, Mary
Comas, Enric
description A method for fully characterizing consecutive batch reactions using self‐modeling curve resolution of in situ spectroscopic measurements and reaction energy profiles is reported. Simultaneous measurement of reaction temperature, reactor jacket temperature, reactor heater power and UV/visible spectra was made with a laboratory (50 ml capacity) batch reactor equipped with a UV/visible spectrometer and a fiber optic attenuated total reflectance (ATR) probe. Composition profiles and pure component spectra of reactants and products were estimated without the aid of reference measurements or standards from the in situ UV/visible spectra using non‐negative alternating least squares (ALS), a type of self‐modeling curve resolution (SMCR). Multiway SMCR analysis of consecutive batches permitted standardless comparisons of consecutive batches to determine which batch produced more or less product and which batch proceeded faster or slower. Dynamic modeling of batch energy profiles permitted mathematical resolution of the reaction dose heat and reaction heat. Kinetic fitting of the in situ reaction spectra was used to determine reaction rate constants. These three complementary approaches permitted simple and rapid characterization of the reaction's rate of reaction, energy balance and mass balance. Copyright © 2003 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/cem.793
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18944539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18944539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3913-1d396e6deb60f938c1d34a27030baa5f0ee116f28d869f789f908d4b18d0d3953</originalsourceid><addsrcrecordid>eNp1kMlOwzAQhi0EEmURr-ALcICAHSeOfYSqFKSySWw3y3Um1JCl2K6gPD1GQXDiNNLMN59mfoR2KDmihKTHBpqjQrIVNKBEyoSm4mkVDYgQPJFMsHW04f0LIXHGsgGaDWfaaRPA2U_bPuOpDmaGHcSW7VqP322YYdtib8MC-zmY4Dpvurk1uAHtFw4aaIM_xEbXnbMNBLfEui1xuWx18011JdTRvIXWKl172P6pm-j-bHQ3PE8m1-OL4ckkMUxSltCSSQ68hCknVbzXxEam04IwMtU6rwgApbxKRSm4rAohK0lEmU2pKElczdkm2uu9c9e9LcAH1VhvoK51C93CKypkluVMRnC_B038yDuo1Dzer91SUaK-k1QxSRWTjOTuj1L7-GbldGus_8PzlHOaFZE76Ll3W8PyP50aji57a9LT1gf4-KW1e1W8YEWuHq_Gij-J89Ob20v1wL4AZImScw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18944539</pqid></control><display><type>article</type><title>Characterizing batch reactions with in situ spectroscopic measurements, calorimetry and dynamic modeling</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Ma, Bei ; Gemperline, Paul J. ; Cash, Eric ; Bosserman, Mary ; Comas, Enric</creator><creatorcontrib>Ma, Bei ; Gemperline, Paul J. ; Cash, Eric ; Bosserman, Mary ; Comas, Enric</creatorcontrib><description>A method for fully characterizing consecutive batch reactions using self‐modeling curve resolution of in situ spectroscopic measurements and reaction energy profiles is reported. Simultaneous measurement of reaction temperature, reactor jacket temperature, reactor heater power and UV/visible spectra was made with a laboratory (50 ml capacity) batch reactor equipped with a UV/visible spectrometer and a fiber optic attenuated total reflectance (ATR) probe. Composition profiles and pure component spectra of reactants and products were estimated without the aid of reference measurements or standards from the in situ UV/visible spectra using non‐negative alternating least squares (ALS), a type of self‐modeling curve resolution (SMCR). Multiway SMCR analysis of consecutive batches permitted standardless comparisons of consecutive batches to determine which batch produced more or less product and which batch proceeded faster or slower. Dynamic modeling of batch energy profiles permitted mathematical resolution of the reaction dose heat and reaction heat. Kinetic fitting of the in situ reaction spectra was used to determine reaction rate constants. These three complementary approaches permitted simple and rapid characterization of the reaction's rate of reaction, energy balance and mass balance. Copyright © 2003 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0886-9383</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.793</identifier><identifier>CODEN: JOCHEU</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Analytical chemistry ; batch process analysis ; calorimetry ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; General. Nomenclature, chemical documentation, computer chemistry ; kinetic fitting ; Miscellaneous ; multivariate curve resolution ; multiway analysis ; process analysis ; self-modeling curve resolution ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; UV spectroscopy</subject><ispartof>Journal of chemometrics, 2003-08, Vol.17 (8-9), p.470-479</ispartof><rights>Copyright © 2003 John Wiley &amp; Sons, Ltd.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3913-1d396e6deb60f938c1d34a27030baa5f0ee116f28d869f789f908d4b18d0d3953</citedby><cites>FETCH-LOGICAL-c3913-1d396e6deb60f938c1d34a27030baa5f0ee116f28d869f789f908d4b18d0d3953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15266147$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Bei</creatorcontrib><creatorcontrib>Gemperline, Paul J.</creatorcontrib><creatorcontrib>Cash, Eric</creatorcontrib><creatorcontrib>Bosserman, Mary</creatorcontrib><creatorcontrib>Comas, Enric</creatorcontrib><title>Characterizing batch reactions with in situ spectroscopic measurements, calorimetry and dynamic modeling</title><title>Journal of chemometrics</title><addtitle>J. Chemometrics</addtitle><description>A method for fully characterizing consecutive batch reactions using self‐modeling curve resolution of in situ spectroscopic measurements and reaction energy profiles is reported. Simultaneous measurement of reaction temperature, reactor jacket temperature, reactor heater power and UV/visible spectra was made with a laboratory (50 ml capacity) batch reactor equipped with a UV/visible spectrometer and a fiber optic attenuated total reflectance (ATR) probe. Composition profiles and pure component spectra of reactants and products were estimated without the aid of reference measurements or standards from the in situ UV/visible spectra using non‐negative alternating least squares (ALS), a type of self‐modeling curve resolution (SMCR). Multiway SMCR analysis of consecutive batches permitted standardless comparisons of consecutive batches to determine which batch produced more or less product and which batch proceeded faster or slower. Dynamic modeling of batch energy profiles permitted mathematical resolution of the reaction dose heat and reaction heat. Kinetic fitting of the in situ reaction spectra was used to determine reaction rate constants. These three complementary approaches permitted simple and rapid characterization of the reaction's rate of reaction, energy balance and mass balance. Copyright © 2003 John Wiley &amp; Sons, Ltd.</description><subject>Analytical chemistry</subject><subject>batch process analysis</subject><subject>calorimetry</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>General. Nomenclature, chemical documentation, computer chemistry</subject><subject>kinetic fitting</subject><subject>Miscellaneous</subject><subject>multivariate curve resolution</subject><subject>multiway analysis</subject><subject>process analysis</subject><subject>self-modeling curve resolution</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>UV spectroscopy</subject><issn>0886-9383</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1kMlOwzAQhi0EEmURr-ALcICAHSeOfYSqFKSySWw3y3Um1JCl2K6gPD1GQXDiNNLMN59mfoR2KDmihKTHBpqjQrIVNKBEyoSm4mkVDYgQPJFMsHW04f0LIXHGsgGaDWfaaRPA2U_bPuOpDmaGHcSW7VqP322YYdtib8MC-zmY4Dpvurk1uAHtFw4aaIM_xEbXnbMNBLfEui1xuWx18011JdTRvIXWKl172P6pm-j-bHQ3PE8m1-OL4ckkMUxSltCSSQ68hCknVbzXxEam04IwMtU6rwgApbxKRSm4rAohK0lEmU2pKElczdkm2uu9c9e9LcAH1VhvoK51C93CKypkluVMRnC_B038yDuo1Dzer91SUaK-k1QxSRWTjOTuj1L7-GbldGus_8PzlHOaFZE76Ll3W8PyP50aji57a9LT1gf4-KW1e1W8YEWuHq_Gij-J89Ob20v1wL4AZImScw</recordid><startdate>200308</startdate><enddate>200308</enddate><creator>Ma, Bei</creator><creator>Gemperline, Paul J.</creator><creator>Cash, Eric</creator><creator>Bosserman, Mary</creator><creator>Comas, Enric</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>200308</creationdate><title>Characterizing batch reactions with in situ spectroscopic measurements, calorimetry and dynamic modeling</title><author>Ma, Bei ; Gemperline, Paul J. ; Cash, Eric ; Bosserman, Mary ; Comas, Enric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3913-1d396e6deb60f938c1d34a27030baa5f0ee116f28d869f789f908d4b18d0d3953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Analytical chemistry</topic><topic>batch process analysis</topic><topic>calorimetry</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>General. Nomenclature, chemical documentation, computer chemistry</topic><topic>kinetic fitting</topic><topic>Miscellaneous</topic><topic>multivariate curve resolution</topic><topic>multiway analysis</topic><topic>process analysis</topic><topic>self-modeling curve resolution</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>UV spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Bei</creatorcontrib><creatorcontrib>Gemperline, Paul J.</creatorcontrib><creatorcontrib>Cash, Eric</creatorcontrib><creatorcontrib>Bosserman, Mary</creatorcontrib><creatorcontrib>Comas, Enric</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Bei</au><au>Gemperline, Paul J.</au><au>Cash, Eric</au><au>Bosserman, Mary</au><au>Comas, Enric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing batch reactions with in situ spectroscopic measurements, calorimetry and dynamic modeling</atitle><jtitle>Journal of chemometrics</jtitle><addtitle>J. Chemometrics</addtitle><date>2003-08</date><risdate>2003</risdate><volume>17</volume><issue>8-9</issue><spage>470</spage><epage>479</epage><pages>470-479</pages><issn>0886-9383</issn><eissn>1099-128X</eissn><coden>JOCHEU</coden><abstract>A method for fully characterizing consecutive batch reactions using self‐modeling curve resolution of in situ spectroscopic measurements and reaction energy profiles is reported. Simultaneous measurement of reaction temperature, reactor jacket temperature, reactor heater power and UV/visible spectra was made with a laboratory (50 ml capacity) batch reactor equipped with a UV/visible spectrometer and a fiber optic attenuated total reflectance (ATR) probe. Composition profiles and pure component spectra of reactants and products were estimated without the aid of reference measurements or standards from the in situ UV/visible spectra using non‐negative alternating least squares (ALS), a type of self‐modeling curve resolution (SMCR). Multiway SMCR analysis of consecutive batches permitted standardless comparisons of consecutive batches to determine which batch produced more or less product and which batch proceeded faster or slower. Dynamic modeling of batch energy profiles permitted mathematical resolution of the reaction dose heat and reaction heat. Kinetic fitting of the in situ reaction spectra was used to determine reaction rate constants. These three complementary approaches permitted simple and rapid characterization of the reaction's rate of reaction, energy balance and mass balance. Copyright © 2003 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/cem.793</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0886-9383
ispartof Journal of chemometrics, 2003-08, Vol.17 (8-9), p.470-479
issn 0886-9383
1099-128X
language eng
recordid cdi_proquest_miscellaneous_18944539
source Wiley-Blackwell Read & Publish Collection
subjects Analytical chemistry
batch process analysis
calorimetry
Chemistry
Exact sciences and technology
General and physical chemistry
General. Nomenclature, chemical documentation, computer chemistry
kinetic fitting
Miscellaneous
multivariate curve resolution
multiway analysis
process analysis
self-modeling curve resolution
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
UV spectroscopy
title Characterizing batch reactions with in situ spectroscopic measurements, calorimetry and dynamic modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20batch%20reactions%20with%20in%20situ%20spectroscopic%20measurements,%20calorimetry%20and%20dynamic%20modeling&rft.jtitle=Journal%20of%20chemometrics&rft.au=Ma,%20Bei&rft.date=2003-08&rft.volume=17&rft.issue=8-9&rft.spage=470&rft.epage=479&rft.pages=470-479&rft.issn=0886-9383&rft.eissn=1099-128X&rft.coden=JOCHEU&rft_id=info:doi/10.1002/cem.793&rft_dat=%3Cproquest_cross%3E18944539%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3913-1d396e6deb60f938c1d34a27030baa5f0ee116f28d869f789f908d4b18d0d3953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18944539&rft_id=info:pmid/&rfr_iscdi=true